RESUMEN
We investigated the effects of obesity on metabolic, inflammatory, and oxidative stress parameters in the adipose tissue of patients with fatal COVID-19. Postmortem biopsies of subcutaneous adipose tissue were obtained from 25 unvaccinated inpatients who passed from COVID-19, stratified as nonobese (N-OB; body mass index [BMI], 26.5 ± 2.3 kg m-2) or obese (OB BMI 34.2 ± 5.1 kg m-2). Univariate and multivariate analyses revealed that body composition was responsible for most of the variations detected in the metabolome, with greater dispersion observed in the OB group. Fifteen metabolites were major segregation factors. Results from the OB group showed higher levels of creatinine, myo-inositol, O-acetylcholine, and succinate, and lower levels of sarcosine. The N-OB group showed lower levels of glutathione peroxidase activity, as well as higher content of IL-6 and adiponectin. We revealed significant changes in the metabolomic profile of the adipose tissue in fatal COVID-19 cases, with high adiposity playing a key role in these observed variations. These findings highlight the potential involvement of metabolic and inflammatory pathways, possibly dependent on hypoxia, shedding light on the impact of obesity on disease pathogenesis and suggesting avenues for further research and possible therapeutic targets.
Asunto(s)
Autopsia , COVID-19 , Metaboloma , Obesidad , Humanos , COVID-19/metabolismo , COVID-19/mortalidad , COVID-19/patología , COVID-19/virología , Obesidad/metabolismo , Obesidad/patología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , SARS-CoV-2/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Metabolómica/métodos , Índice de Masa Corporal , Adulto , Estrés Oxidativo , Interleucina-6/metabolismoRESUMEN
PURPOSE OF REVIEW: To discuss the recent discoveries and limitations of the available literature on emerging circulating biomarkers of cancer cachexia. RECENT FINDINGS: Studies on circulating factors in cancer cachexia show promising alternatives for diagnosing the syndrome in a minimally invasive manner in the clinic setting, as well as potential targets for cancer cachexia treatment. Factors secreted by the tumor and the adipose tissue, such as extracellular vesicles and soluble proteins, respectively, have been shown to either directly induce wasting in vitro and in vivo or to be altered in the cachectic phenotype. The detection and characterization of circulating cells allows detection of the precachectic stage and the levels of the soluble immune checkpoint protein programmed death ligand-1 (PD-L1) are correlated with the presence of the hallmarks of cancer cachexia. SUMMARY: Structural, molecular, and metabolic alterations have been observed in various tissues, revealing the occurrence of sustained inter-compartment crosstalk in cachectic patients. Early diagnosis of cancer cachexia becomes crucial to avoid the establishment of refractory cachexia through the implementation of interventions that may attenuate systemic inflammation and muscle loss. More studies on human cancer cachexia are required in order to address the recently discovered cachexia-associated circulating factors' value as biomarkers of the syndrome.
Asunto(s)
Caquexia , Neoplasias , Humanos , Caquexia/diagnóstico , Caquexia/etiología , Caquexia/metabolismo , Investigación Biomédica Traslacional , Neoplasias/metabolismo , Tejido Adiposo/metabolismo , Biomarcadores/metabolismo , Músculo Esquelético/metabolismoRESUMEN
Traumatic spinal cord injury is a major cause of disability for which there are currently no fully effective treatments. Recent studies using epidural electrical stimulation have shown significant advances in motor rehabilitation, even when applied during chronic phases of the disease. The present study aimed to investigate the effectiveness of epidural electric stimulation in the motor recovery of rats with spinal cord injury. Furthermore, we aimed to elucidate the neurophysiological mechanisms underlying motor recovery. First, we improved upon the impact spinal cord injury model to cause severe and permanent motor deficits lasting up to 2 months. Next, we developed and tested an implantable epidural spinal cord stimulator device for rats containing an electrode and an implantable generator. Finally, we evaluated the efficacy of epidural electrical stimulation on motor recovery after spinal cord injury in Wistar rats. A total of 60 animals were divided into the following groups: (i) severe injury with epidural electrical stimulation (injury + stim, n = 15), (ii) severe injury without stimulation (group injury, n = 15), (iii) sham implantation without battery (sham, n = 15), and (iv) a control group, without surgical intervention (control, n = 15). All animals underwent weekly evaluations using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale index, inclined plane, and OpenField test starting one week before the lesion and continuing for eight weeks. After this period, the animals were sacrificed and their spinal cords were explanted and prepared for histological analysis (hematoxylin-eosin) and immunohistochemistry for NeuN, ß-III-tubulin, synaptophysin, and Caspase 3. Finally, NeuN-positive neuronal nuclei were quantified through stereology; fluorescence signal intensities for ß-tubulin, synaptophyin, and Caspase 3 were quantified using an epifluorescence microscope. The injury + stim group showed significant improvement on the BBB scale compared with the injured group after the 5th week (p < 0.05). Stereological analysis showed a significantly higher average count of neural cells in the injury + stim group in relation to the injury group (1783 ± 2 vs. 897 ± 3, p < 0.001). Additionally, fluorescence signal intensity for synaptophysin was significantly higher in the injury + stim group in relation to the injury group (1294 ± 46 vs. 1198 ± 23, p < 0.01); no statistically significant difference was found in ß-III-tubulin signal intensity. Finally, Caspase 3 signal intensity was significantly lower in the stim group (727 ± 123) compared with the injury group (1225 ± 87 p < 0.05), approaching levels observed in the sham and control groups. Our data suggest a regenerative and protective effect of epidural electrical stimulation in rats subjected to impact-induced traumatic spinal cord injury.
Asunto(s)
Modelos Animales de Enfermedad , Plasticidad Neuronal , Ratas Wistar , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Ratas , Recuperación de la Función , Terapia por Estimulación Eléctrica/métodos , Sinaptofisina/metabolismo , Tubulina (Proteína)/metabolismo , Espacio Epidural/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Médula Espinal/fisiopatología , Masculino , Caspasa 3/metabolismo , Regeneración Nerviosa , Femenino , Proteínas del Tejido Nervioso , Antígenos NuclearesRESUMEN
BACKGROUND: Lung fibrosis is a major concern in severe COVID-19 patients undergoing mechanical ventilation (MV). Lung fibrosis frequency in post-COVID syndrome is highly variable and even if the risk is proportionally small, many patients could be affected. However, there is still no data on lung extracellular matrix (ECM) composition in severe COVID-19 and whether it is different from other aetiologies of ARDS. METHODS: We have quantified different ECM elements and TGF-ß expression in lung tissue of 28 fatal COVID-19 cases and compared to 27 patients that died of other causes of ARDS, divided according to MV duration (up to six days or seven days or more). In COVID-19 cases, ECM elements were correlated with lung transcriptomics and cytokines profile. RESULTS: We observed that COVID-19 cases presented significant increased deposition of collagen, fibronectin, versican, and TGF-ß, and decreased decorin density when compared to non-COVID-19 cases of similar MV duration. TGF-ß was precociously increased in COVID-19 patients with MV duration up to six days. Lung collagen was higher in women with COVID-19, with a transition of upregulated genes related to fibrillogenesis to collagen production and ECM disassembly along the MV course. CONCLUSIONS: Fatal COVID-19 is associated with an early TGF-ß expression lung environment after the MV onset, followed by a disordered ECM assembly. This uncontrolled process resulted in a prominent collagen deposition when compared to other causes of ARDS. Our data provides pathological substrates to better understand the high prevalence of pulmonary abnormalities in patients surviving COVID-19.
Asunto(s)
COVID-19 , Fibrosis Pulmonar , Síndrome de Dificultad Respiratoria , Humanos , Femenino , Fibrosis Pulmonar/metabolismo , COVID-19/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Pulmón/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Síndrome de Dificultad Respiratoria/metabolismoRESUMEN
To investigate the impact of different exercise training schedules (following a fixed schedule or at random times of the day) on clock genes and myokine expression patterns in the skeletal muscle of tumor-bearing mice. Mice were divided into three groups: tumor (LLC), tumor + exercise training (LLC + T) always performed at the same time of the day (ZT2) and exercise training at random times of the day (ZTAlt). Mice were inoculated subcutaneously with Lewis lung carcinoma cells. The gastrocnemius muscle was dissected and the clock gene expression (Clock/Per1/Per2/Per3/Rev-Erbα/GAPDH) was investigated by quantitative reverse transcription polymerase chain reaction with SYBR® Green. Myokine content in muscle (tumour necrosis factor alpha/IL-10/IL-4) was assessed by enzyme-linked immunosorbent assay. At the end of the protocol, the trained groups showed a reduction in total weight, when compared to Lewis lung carcinoma. Tumor weight was lower in the LLC + T (ZTAlt), when compared to LLC. Clock gene mRNA expression showed a significant increase for ZT20 in the groups that performed physical exercise at LLC + T (ZTAlt), when compared with LLC. The Per family showed increased mRNA expression in ZT4 in both trained mice groups, when compared with LLC. LLC + T (ZTAlt) presented reduction of the expression of anti-inflammatory myokines (Il-10/IL-4) during the night, compared with LLC + T(ZT2). Exercise training is able to induce marked modification of clock gene expression and of the production of myokines, in a way that is dependent on schedule exercise training strategy. Taken together, the results show that exercise is a potent Zeitgeber and may thus contribute to change clock genes expression and myokines that are able to reduce the tumor weight.
Asunto(s)
Proteínas CLOCK , Carcinoma Pulmonar de Lewis , Ejercicio Físico , Animales , Ratones , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/terapia , Ritmo Circadiano/genética , Interleucina-10 , Interleucina-4 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ejercicio Físico/fisiologíaRESUMEN
BACKGROUND: Childhood overweight and obesity are a global concern, with prevalence rising dramatically over the last decades. The condition is caused by an increase in energy intake and reduction of physical activity, leading to excessive fat accumulation, followed by systemic chronic inflammation and altered function of immune cell responses. This study aimed at providing new insights regarding sex-specificity on the inflammatory response to obesity in the young patient. DESIGN: Forty-three Brazilian obese adolescents (Female = 22 and Male=21, BMI (body mass index) Z-score average = 2.78 ± 0.51) and forty-nine eutrophic adolescents (Female = 24 and Male = 25, BMI Z-score average = -0.35 ± 0.88) were enrolled in the study. Anthropometrical analyses and blood cell counts were carried out. Using Luminex®xMAP™ technology, circulating serum cytokines, chemokines, and inflammatory biomarkers were analyzed. Two-way ANOVA test, Tukey's test, and Spearman's correlation coefficient were employed, with a significance threshold set at p < 0.05. RESULTS: We identified increased levels of serum amyloid A (SAA), platelets, and leukocytes solely in male obese patients. We found a noteworthy sex-dependent pattern in regard to inflammatory response: obese boys showed higher TNFß, IL15, and IL2 and lower IL10 and IL13, while obese girls showed increased TNFα, CCL3, CCL4, and IP10 content in the circulation. BMI Z-score was significantly linearly correlated with neutrophils, leukocytes, platelets, SAA, TNFα, CCL3, CCL4, IP10, and IL13 levels within the entire cohort (non-sex-dependent). CONCLUSIONS: Our data support a complex relationship between adiposity, blood cell count, and circulating inflammatory cytokine content. High SAA levels suggest that this factor may play a critical role in local and systemic inflammation. In the eutrophic group, females presented a lower status of inflammation, as compared to males. Both obese boys and girls showed an increased inflammatory response in relation to eutrophic counterparts. Taken together, results point out to clear sex dimorphism in the inflammatory profile of obese adolescents.
Asunto(s)
Inflamación/sangre , Obesidad Infantil/epidemiología , Caracteres Sexuales , Adiposidad , Adolescente , Biomarcadores/sangre , Recuento de Células Sanguíneas , Índice de Masa Corporal , Brasil , Quimiocinas/sangre , Niño , Citocinas/sangre , Femenino , Humanos , MasculinoRESUMEN
The study investigated the immediate effect of a moderate interval-running training session on circulating inflammatory cytokines concentration at real conditions of training. Nine recreational runners (5 women and 4 men; 68,33 ± 10,20 kg; 1,65 ± 0,07 m; 28,67 ± 4,24 years) had blood samples collected from antecubital vein before and immediately after a moderate interval-running training session without fasting. Cytokine levels were obtained from blood samples through Multiplex Analysis of Sample Protein Content, performed by Magpix® instrument. The assay detected the cytokines and calculated the plasma cytokine concentrations. Reduced concentration was observed after training session for all cytokines (p < 0.05), except for IP-10. Moderate effect sizes were identified in IL-6, IL-8, TNF-α, IP-10, MCP1 and GM-CSF. In summary, a single moderate interval-running training session at real conditions of training seems not to be stressing enough to increase cytokine levels as a response to the exercise. Results reinforce that immediate biochemical response and inflammatory modulation related to exercise is dose-dependent and may be influenced by other variables.
Asunto(s)
Ejercicio Físico/fisiología , Inflamación/fisiopatología , Carrera/fisiología , Adulto , Citocinas/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Resistencia Física/fisiologíaRESUMEN
An idiopathic myopathy characterized by central nuclei in muscle fibers, a hallmark of muscle regeneration, has been observed in cancer patients. In cancer cachexia skeletal muscle is incapable of regeneration, consequently, this observation remains unaccounted for. In C26-tumor bearing, cachectic mice, we observed muscle fibers with central nuclei in the absence of molecular markers of bona fide regeneration. These clustered, non-peripheral nuclei were present in NCAM-expressing muscle fibers. Since NCAM expression is upregulated in denervated myofibers, we searched for additional makers of denervation, including AchRs, MUSK, and HDAC. This last one being also consistently upregulated in cachectic muscles, correlated with an increase of central myonuclei. This held true in the musculature of patients suffering from gastrointestinal cancer, where a progressive increase in the number of central myonuclei was observed in weight stable and in cachectic patients, compared to healthy subjects. Based on all of the above, the presence of central myonuclei in cancer patients and animal models of cachexia is consistent with motor neuron loss or NMJ perturbation and could underlie a previously neglected phenomenon of denervation, rather than representing myofiber damage and regeneration in cachexia. Similarly to aging, denervation-dependent myofiber atrophy could contribute to muscle wasting in cancer cachexia.
Asunto(s)
Biomarcadores/metabolismo , Caquexia/patología , Neoplasias del Colon/complicaciones , Fibras Musculares Esqueléticas/metabolismo , Animales , Caquexia/etiología , Caquexia/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Modelos Animales de Enfermedad , Femenino , Histona Desacetilasas/metabolismo , Ratones , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/inervación , Trasplante de NeoplasiasRESUMEN
Cancer cachexia is a multifactorial syndrome characterized by body weight loss, atrophy of adipose tissue (AT) and systemic inflammation. However, there is limited information regarding the mechanisms of immunometabolic response in AT from cancer cachexia. Male Wistar rats were inoculated with 2 × 107 of Walker 256 tumor cells [tumor bearing (TB) rats]. The mesenteric AT (MeAT) was collected on d 0, 4, 7 (early stage), and 14 (cachexia stage) after tumor cell injection. Surgical biopsies for MeAT were obtained from patients who had gastrointestinal cancer with cachexia. Lipolysis showed an early decrease in glycerol release in TB d 4 (TB4) rats in relation to the control, followed by a 6-fold increase in TB14 rats, whereas de novo lipogenesis was markedly lower in the incorporation of glucose into fatty acids in TB14 rats during the development of cachexia. CD11b and CD68 were positive in TB7 and TB14 rats, respectively. In addition, we found cachexia stage results similar to those of animals in MeAT from patients: an increased presence of CD68+, iNOS2+, TNFα+, and HSL+ cells. In summary, translational analysis of MeAT from patients and an animal model of cancer cachexia enabled us to identify early disruption in Adl turnover and subsequent inflammatory response during the development of cancer cachexia.-Henriques, F. S., Sertié, R. A. L., Franco, F. O., Knobl, P., Neves, R. X., Andreotti, S., Lima, F. B., Guilherme, A., Seelaender, M., Batista, M. L., Jr. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome.
Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Caquexia/etiología , Caquexia/metabolismo , Metabolismo de los Lípidos , Neoplasias/complicaciones , Neoplasias/metabolismo , Animales , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Ratas WistarRESUMEN
Chia seed (Salvia hispanica L.) contains high amounts of n-3 α-linolenic acid (ALA) and has been associated with many health benefits. The aim of the present study was to evaluate the AIN-93 diet supplemented by chia flour on cancer-cachexia development and tissues inflammatory response. Wistar rats at 30 days old were treated with control diet or diet supplemented with chia flour for eight weeks. After this period, half of the animals in each diet group were inoculated with Walker 256 tumor cells. On the 14th day after tumor inoculation, the animals were euthanized and white adipose tissue depots, liver, gastrocnemius muscle, and tumor were removed. The tumor weight was higher and IL-10 content was lower in chia flour group. The tumor bearing did not modify the cytokines content in gastrocnemius muscle, retroperitoneal and epididymal adipose tissue, however, it decreased IL-1ß and TNF-α content in liver, and IL6R and IL-10R protein content in mesenteric adipose tissue. In conclusion, our results demonstrated that supplementation with chia flour did not prevent the tumor bearing effects in Walker 256 model.
Asunto(s)
Carcinoma 256 de Walker/patología , Suplementos Dietéticos , Inflamación/metabolismo , Salvia , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Carcinoma 256 de Walker/dietoterapia , Citocinas/metabolismo , Harina/análisis , Prueba de Tolerancia a la Glucosa , Inflamación/dietoterapia , Lípidos/análisis , Masculino , Trasplante de Neoplasias , Tamaño de los Órganos , Proteínas/análisis , Ratas WistarRESUMEN
BACKGROUND: CD40 ligand (CD40L) deficiency predisposes to opportunistic infections, including those caused by fungi and intracellular bacteria. Studies of CD40L-deficient patients reveal the critical role of CD40L-CD40 interaction for the function of T, B, and dendritic cells. However, the consequences of CD40L deficiency on macrophage function remain to be investigated. OBJECTIVES: We sought to determine the effect of CD40L absence on monocyte-derived macrophage responses. METHODS: After observing the improvement of refractory disseminated mycobacterial infection in a CD40L-deficient patient by recombinant human IFN-γ (rhIFN-γ) adjuvant therapy, we investigated macrophage functions from CD40L-deficient patients. We analyzed the killing activity, oxidative burst, cytokine production, and in vitro effects of rhIFN-γ and soluble CD40 ligand (sCD40L) treatment on macrophages. In addition, the effect of CD40L absence on the macrophage transcriptome before and after rhIFN-γ treatment was studied. RESULTS: Macrophages from CD40L-deficient patients exhibited defective fungicidal activity and reduced oxidative burst, both of which improved in the presence of rhIFN-γ but not sCD40L. In contrast, rhIFN-γ and sCD40L ameliorate impaired production of inflammatory cytokines. Furthermore, rhIFN-γ reversed defective control of Mycobacterium tuberculosis proliferation by patients' macrophages. The absence of CD40L dysregulated the macrophage transcriptome, which was improved by rhIFN-γ. Additionally, rhIFN-γ increased expression levels of pattern recognition receptors, such as Toll-like receptors 1 and 2, dectin 1, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin in macrophages from both control subjects and patients. CONCLUSION: Absence of CD40L impairs macrophage development and function. In addition, the improvement of macrophage immune responses by IFN-γ suggests this cytokine as a potential therapeutic option for patients with CD40L deficiency.
Asunto(s)
Ligando de CD40/deficiencia , Síndromes de Inmunodeficiencia/inmunología , Interferón gamma/farmacología , Macrófagos/efectos de los fármacos , Adolescente , Adulto , Células Cultivadas , Niño , Preescolar , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/fisiología , Masculino , Monocitos/citología , Mycobacterium tuberculosis , Fagocitosis , Transcriptoma/efectos de los fármacos , Adulto JovenRESUMEN
We analyzed commonly reported European and Asian obesity-related gene variants in a Mexican-Mestizo population through each single nucleotide polymorphism (SNP) and a genetic risk score (GRS) based on 23 selected SNPs. Study subjects were physically active Mexican-Mestizo adults (n = 608) with body mass index (BMI) values from 18 to 55 kg/m2 . For each SNP and for the GRS, logistic models were performed to test for simple SNP associations with BMI, fat mass percentage (FMP), waist circumference (WC), and the interaction with VO2max and muscular endurance (ME). To further understand the SNP or GRS*physical fitness components, generalized linear models were performed. Obesity risk was significantly associated to 6 SNPs (ADRB2 rs1042713, APOB rs512535, PPARA rs1800206, TNFA rs361525, TRHR rs7832552 and rs16892496) after adjustment by gender, age, ancestry, VO2max , and ME. ME attenuated the influence of APOB rs512535 and TNFA rs361525 on obesity risk in FMP. WC was significantly associated to GRS. Both ME and VO2max attenuated GRS effect on WC. We report associations for 6 out of 23 SNPs and for the GRS, which confer obesity risk, a novel finding for Mexican-Mestizo physically active population. Also, the importance of including physical fitness components variables in obesity genetic risk studies is highlighted, with special regard to intervention purposes.
Asunto(s)
Etnicidad/genética , Predisposición Genética a la Enfermedad , Obesidad/genética , Aptitud Física , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , México , Consumo de Oxígeno/genética , Resistencia Física , Polimorfismo de Nucleótido Simple/genética , Factores de RiesgoRESUMEN
Cachexia is associated with increased morbidity and mortality in cancer. The White adipose tissue (WAT) synthesizes and releases several pro-inflammatory cytokines that play a role in cancer cachexia-related systemic inflammation. IFN-γ is a pleiotropic cytokine that regulates several immune and metabolic functions. To assess whether IFN-γ signalling in different WAT pads is modified along cancer-cachexia progression, we evaluated IFN-γ receptors expression (IFNGR1 and IFNGR2) and IFN-γ protein expression in a rodent model of cachexia (7, 10, and 14days after tumour implantation). IFN-γ protein expression was heterogeneously modulated in WAT, with increases in the mesenteric pad and decreased levels in the retroperitoneal depot along cachexia progression. Ifngr1 was up-regulated 7days after tumour cell injection in mesenteric and epididymal WAT, but the retroperitoneal depot showed reduced Ifngr1 gene expression. Ifngr2 gene expression was increased 7 and 14days after tumour inoculation in mesenteric WAT. The results provide evidence that changes in IFN-γ expression and signalling may be perceived at stages preceding refractory cachexia, and therefore, might be employed as a means to assess the early stage of the syndrome.
Asunto(s)
Tejido Adiposo Blanco/metabolismo , Caquexia/metabolismo , Regulación Neoplásica de la Expresión Génica , Interferón gamma/biosíntesis , Proteínas de Neoplasias/biosíntesis , Neoplasias Experimentales/metabolismo , Transducción de Señal , Tejido Adiposo Blanco/patología , Animales , Caquexia/patología , Masculino , Neoplasias Experimentales/patología , Ratas , Ratas Wistar , Receptores de Interferón/biosíntesis , Receptor de Interferón gammaRESUMEN
PURPOSE OF REVIEW: Cancer anorexia is a negative prognostic factor and is broadly defined as the loss of the interest in food. However, multiple clinical domains contribute to the phenotype of cancer anorexia. The characterization of the clinical and molecular pathophysiology of cancer anorexia may enhance the efficacy of preventive and therapeutic strategies. RECENT FINDINGS: Clinical trials showed that cancer anorexia should be considered as an umbrella encompassing different signs and symptoms contributing to appetite disruption in cancer patients. Loss of appetite, early satiety, changes in taste and smell are determinants of cancer anorexia, whose presence should be assessed in cancer patients. Interestingly, neuronal correlates of cancer anorexia-related symptoms have been revealed by brain imaging techniques. SUMMARY: The pathophysiology of cancer anorexia is complex and involves different domains influencing eating behavior. Limiting the assessment of cancer anorexia to questions investigating changes in appetite may impede correct identification of the targets to address.
Asunto(s)
Anorexia/etiología , Hipotálamo/fisiopatología , Modelos Neurológicos , Neoplasias/fisiopatología , Trastornos del Olfato/fisiopatología , Trastornos del Gusto/fisiopatología , Animales , Anorexia/diagnóstico , Anorexia/prevención & control , Regulación del Apetito , Humanos , Hipotálamo/diagnóstico por imagen , Neoplasias/diagnóstico , Neuroimagen , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/etiología , Trastornos del Olfato/terapia , Pronóstico , Respuesta de Saciedad , Trastornos del Gusto/diagnóstico por imagen , Trastornos del Gusto/etiología , Trastornos del Gusto/terapiaRESUMEN
BACKGROUND: Cancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients. Fibrosis results from uncontrolled ECM synthesis, a process in which, transforming growth factor-beta (TGFß) plays a pivotal role. So far, the mechanisms involved in adipose tissue (AT) re-arrangement, and the role of TGFß in inducing AT remodeling in weight-losing cancer patients are poorly understood. This study examined the modulation of ECM components mediated by TGFß pathway in fibrotic AT obtained from cachectic gastrointestinal cancer patients. METHODS: After signing the informed consent form, patients were enrolled into the following groups: cancer cachexia (CC, n = 21), weight-stable cancer (WSC, n = 17), and control (n = 21). The total amount of collagen and elastic fibers in the subcutaneous AT was assessed by histological analysis and by immunohistochemistry. TGFß isoforms expression was analyzed by Multiplex assay and by immunohistochemistry. Alpha-smooth muscle actin (αSMA), fibroblast-specific protein (FSP1), Smad3 and 4 were quantified by qPCR and/or by immunohistochemistry. Interleukin (IL) 2, IL5, IL8, IL13 and IL17 content, cytokines known to be associated with fibrosis, was measured by Multiplex assay. RESULTS: There was an accumulation of collagen and elastic fibers in the AT of CC, as compared with WSC and controls. Collagens type I, III, VI, and fibronectin expression was enhanced in the tissue of CC, compared with both WSC and control. The pronounced expression of αSMA in the surrounding of adipocytes, and the increased mRNA content for FSP1 (20-fold) indicate the presence of activated myofibroblasts; particularly in CC. TGFß1 and TGFß3 levels were up-regulated by cachexia in AT, as well in the isolated adipocytes. Smad3 and Smad4 labeling was found to be more evident in the fibrotic areas of CC adipose tissue. CONCLUSIONS: Cancer cachexia promotes the development of AT fibrosis, in association with altered TGFß signaling, compromising AT organization and function.
Asunto(s)
Tejido Adiposo/patología , Caquexia/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Actinas/genética , Actinas/metabolismo , Adulto , Anciano , Caquexia/complicaciones , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Femenino , Fibrosis/complicaciones , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/complicaciones , Neoplasias/patología , Isoformas de Proteínas/metabolismo , Proteína de Unión al Calcio S100A4 , Proteínas Smad/genética , Proteínas Smad/metabolismoRESUMEN
BACKGROUND: Cancer cachexia is a multifactorial metabolic syndrome characterized by marked loss of adipose tissue and skeletal muscle. Fat loss from adipose tissue in cancer cachexia is partly the result of increased lipolysis. Despite the growing amount of studies focused on elucidating the mechanisms through which lipolysis-related proteins regulate the lipolytic process, there are scarce data concerning that profile in the adipose tissue of cancer cachectic patients. Considering its fundamental importance, it was our main purpose to characterize the expression of the lipolysis-related proteins in the white adipose tissue of cachectic cancer patients. METHODS: Patients from the University Hospital were divided into three groups: control, cancer cachexia (CC), and weight-stable cancer patients (WSC). To gain greater insight into adipose tissue wasting during cancer cachexia progression, we have also analyzed an experimental model of cachexia (Walker 256 carcinosarcoma). Animals were divided into: control, intermediate cachexia (IC) and terminal cachexia (TC). Subcutaneous white adipose tissue of patients and epidydimal white adipose tissue of animals were investigated regarding molecular aspects by determining the protein content and gene expression of hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58), perilipin 1, leptin, adiponectin, visfatin, and tumour necrosis factor alpha (TNF-alpha). RESULTS: We found augmented lipolysis in CC associated with increased HSL expression, as well as upregulation of ATGL expression and reduction in perilipin 1 content. In IC, there was an imbalance in the secretion of pro- and anti-inflammatory factors. The alterations at the end-stage of cachexia were even more profound, and there was a reduction in the expression of almost all proteins analyzed in the animals. CONCLUSIONS: Our findings show that cachexia induces important morphological, molecular, and humoral alterations in the white adipose tissue, which are specific to the stage of the syndrome.
Asunto(s)
Tejido Adiposo Blanco/metabolismo , Caquexia/metabolismo , Lipasa/metabolismo , Neoplasias/metabolismo , Grasa Subcutánea/metabolismo , Adipoquinas/metabolismo , Animales , Western Blotting , Peso Corporal/fisiología , Ingestión de Alimentos/fisiología , Gotas Lipídicas , Masculino , Ratas Wistar , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
The oligopeptidase neurolysin (EC 3.4.24.16; Nln) was first identified in rat brain synaptic membranes and shown to ubiquitously participate in the catabolism of bioactive peptides such as neurotensin and bradykinin. Recently, it was suggested that Nln reduction could improve insulin sensitivity. Here, we have shown that Nln KO mice have increased glucose tolerance, insulin sensitivity, and gluconeogenesis. KO mice have increased liver mRNA for several genes related to gluconeogenesis. Isotopic label semiquantitative peptidomic analysis suggests an increase in specific intracellular peptides in gastrocnemius and epididymal adipose tissue, which likely is involved with the increased glucose tolerance and insulin sensitivity in the KO mice. These results suggest the exciting new possibility that Nln is a key enzyme for energy metabolism and could be a novel therapeutic target to improve glucose uptake and insulin sensitivity.
Asunto(s)
Gluconeogénesis/fisiología , Intolerancia a la Glucosa/enzimología , Resistencia a la Insulina/fisiología , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Tejido Adiposo/fisiología , Animales , Glucemia/metabolismo , Presión Sanguínea/fisiología , Genotipo , Gluconeogénesis/genética , Intolerancia a la Glucosa/genética , Resistencia a la Insulina/genética , Hígado/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares de Contracción Rápida/fisiología , Músculo Esquelético/fisiología , Fenotipo , Condicionamiento Físico Animal/fisiología , Ácido Pirúvico/metabolismoRESUMEN
Cancer cachexia is a paraneoplastic syndrome compromising quality of life and survival, mainly characterized by involuntary weight loss, fatigue, and systemic inflammation. The syndrome is described as a result of tumor-host interactions characterized by an inflammatory response by the host to the presence of the tumor. Indeed, systemic inflammation is considered a pivotal feature in cachexia progression and maintenance. Cytokines are intimately related to chronic systemic inflammation and the mechanisms underlying the release of these factors are not totally elucidated, the etiology of cachexia being still not fully understood. Therefore, the understanding of cachexia-related mechanisms, as well as the establishment of markers for the syndrome, is very relevant. MicroRNAs (miRNAs) are a class of noncoding RNAs interfering with gene regulation. Different miRNA expression profiles are associated with different diseases and inflammatory processes. miRNAs modulate adipose and skeletal muscle tissue metabolism in cancer cachexia and also tumor and tissue derived inflammation. Therefore, we propose a possible role for miRNAs in the modulation of the host inflammatory response during cachexia. Moreover, the establishment of a robust body of evidence in regard to miRNAs and the mechanisms underlying cachexia is mandatory, and shall contribute to the improvement of its diagnosis and treatment.
Asunto(s)
Caquexia/patología , MicroARNs/metabolismo , Neoplasias/patología , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Caquexia/complicaciones , Citocinas/metabolismo , Humanos , Inflamación , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Transducción de Señal , Pérdida de PesoRESUMEN
(1) Background: We examined the effect of the acute administration of olive oil (EVOO), linseed oil (GLO), soybean oil (SO), and palm oil (PO) on gastric motility and appetite in rats. (2) Methods: We assessed food intake, gastric retention (GR), and gene expression in all groups. (3) Results: Both EVOO and GLO were found to enhance the rate of stomach retention, leading to a decrease in hunger. On the other hand, the reduction in food intake caused by SO was accompanied by delayed effects on stomach retention. PO caused an alteration in the mRNA expression of NPY, POMC, and CART. Although PO increased stomach retention after 180 min, it did not affect food intake. It was subsequently verified that the absence of an autonomic reaction did not nullify the influence of EVOO in reducing food consumption. Moreover, in the absence of parasympathetic responses, animals that received PO exhibited a significant decrease in food consumption, probably mediated by lower NPY expression. (4) Conclusions: This study discovered that different oils induce various effects on parameters related to food consumption. Specifically, EVOO reduces food consumption primarily through its impact on the gastrointestinal tract, making it a recommended adjunct for weight loss. Conversely, the intake of PO limits food consumption in the absence of an autonomic reaction, but it is not advised due to its contribution to the development of cardiometabolic disorders.
Asunto(s)
Regulación del Apetito , Hipotálamo , Neuropéptido Y , Aceite de Oliva , Aceite de Palma , Aceite de Soja , Nervio Vago , Animales , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Masculino , Aceite de Oliva/farmacología , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Aceite de Palma/farmacología , Regulación del Apetito/efectos de los fármacos , Aceite de Soja/administración & dosificación , Aceite de Soja/farmacología , Ratas Wistar , Aceite de Linaza/farmacología , Ratas , Ingestión de Alimentos/efectos de los fármacos , Aceites de Plantas/farmacología , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Motilidad Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Mensajero/genéticaRESUMEN
Introduction: Post-COVID-19 condition (PCC) is characterised by a plethora of symptoms, with fatigue appearing as the most frequently reported. The alterations that drive both the persistent and post-acute disease newly acquired symptoms are not yet fully described. Given the lack of robust knowledge regarding the mechanisms of PCC we have examined the impact of inflammation in PCC, by evaluating serum cytokine profile and its potential involvement in inducing the different symptoms reported. Methods: In this cross-sectional study, we recruited 227 participants who were hospitalised with acute COVID-19 in 2020 and came back for a follow-up assessment 6-12 months after hospital discharge. The participants were enrolled in two symptomatic groups: Self-Reported Symptoms group (SR, n = 96), who did not present major organ lesions, yet reported several debilitating symptoms such as fatigue, muscle weakness, and persistent loss of sense of smell and taste; and the Self-Reported Symptoms and decreased Pulmonary Function group (SRPF, n = 54), composed by individuals with the same symptoms described by SR, plus diagnosed pulmonary lesions. A Control group (n = 77), with participants with minor complaints following acute COVID-19, was also included in the study. Serum cytokine levels, symptom questionnaires, physical performance tests and general clinical data were obtained in the follow-up assessment. Results: SRPF presented lower IL-4 concentration compared with Control (q = 0.0018) and with SR (q = 0.030), and lower IFN-α2 serum content compared with Control (q = 0.007). In addition, SRPF presented higher MIP-1ß serum concentration compared with SR (q = 0.029). SR presented lower CCL11 (q = 0.012 and q = 0.001, respectively) and MCP-1 levels (q = 0.052 for both) compared with Control and SRPF. SRPF presented lower G-CSF compared to Control (q = 0.014). Female participants in SR showed lower handgrip strength in relation to SRPF (q = 0.0082). Male participants in SR and SRPF needed more time to complete the timed up-and-go test, as compared with men in the Control group (q = 0.0302 and q = 0.0078, respectively). Our results indicate that different PCC symptom profiles are accompanied by distinct inflammatory markers in the circulation. Of particular concern are the lower muscle function findings, with likely long-lasting consequences for health and quality of life, found for both PCC phenotypes.