Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982534

RESUMEN

We review the key steps leading to an improved analysis of thermal protein unfolding. Thermal unfolding is a dynamic cooperative process with many short-lived intermediates. Protein unfolding has been measured by various spectroscopic techniques that reveal structural changes, and by differential scanning calorimetry (DSC) that provides the heat capacity change Cp(T). The corresponding temperature profiles of enthalpy ΔH(T), entropy ΔS(T), and free energy ΔG(T) have thus far been evaluated using a chemical equilibrium two-state model. Taking a different approach, we demonstrated that the temperature profiles of enthalpy ΔH(T), entropy ΔS(T), and free energy ΔG(T) can be obtained directly by a numerical integration of the heat capacity profile Cp(T). DSC thus offers the unique possibility to assess these parameters without resorting to a model. These experimental parameters now allow us to examine the predictions of different unfolding models. The standard two-state model fits the experimental heat capacity peak quite well. However, neither the enthalpy nor entropy profiles (predicted to be almost linear) are congruent with the measured sigmoidal temperature profiles, nor is the parabolic free energy profile congruent with the experimentally observed trapezoidal temperature profile. We introduce three new models, an empirical two-state model, a statistical-mechanical two-state model and a cooperative statistical-mechanical multistate model. The empirical model partially corrects for the deficits of the standard model. However, only the two statistical-mechanical models are thermodynamically consistent. The two-state models yield good fits for the enthalpy, entropy and free energy of unfolding of small proteins. The cooperative statistical-mechanical multistate model yields perfect fits, even for the unfolding of large proteins such as antibodies.


Asunto(s)
Desplegamiento Proteico , Proteínas , Desnaturalización Proteica , Termodinámica , Entropía , Proteínas/química , Rastreo Diferencial de Calorimetría , Pliegue de Proteína
2.
J Biol Chem ; 291(28): 14483-98, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27226582

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Aniones/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Catálisis , Línea Celular , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Glucólisis , Hidrólisis , Mutación , Fosforilación Oxidativa
3.
Mol Pharm ; 14(1): 284-295, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27977215

RESUMEN

The parallel artificial membrane permeability assay (PAMPA) has emerged as a widely used primary in vitro screen for passive permeability of potential drug candidates. However, the molecular structure of the permeation barrier (consisting of a filter-supported dodecane-egg lecithin mixture) has never been characterized. Here, we investigated the long-range order of phospholipids in the PAMPA barrier by means of 31P static solid-state NMR. Diffusion constants of PAMPA membrane components were derived from liquid state NMR and, in addition, drug distribution between the PAMPA lipid phase and buffer (log DPAMPA at pH 7.4) was systematically investigated. Increasing concentration of n-dodecane to the system egg lecithin-water (lamellar phase, Lα) induces formation of inverted hexagonal (Hii) and isotropic phases. At n-dodecane concentrations matching those used in PAMPA (9%, w/v) a purely "isotropic" phase was observed corresponding to lipid aggregates with a diameter in the range 4-7 nm. Drug distribution studies indicate that these reverse micelles facilitate the binding to, and in turn the permeation across, the PAMPA dodecane barrier, in particular for amphiphilic solutes. The proposed model for the molecular architecture and function of the PAMPA barrier provides a fundamental, hitherto missing framework to evaluate the scope but also limitations of PAMPA for the prediction of in vivo membrane permeability.


Asunto(s)
Lípidos/química , Alcanos/química , Bioensayo/métodos , Difusión , Lecitinas/química , Espectroscopía de Resonancia Magnética/métodos , Membranas Artificiales , Micelas , Permeabilidad , Fosfolípidos/química
4.
Biochemistry ; 54(40): 6195-206, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26381710

RESUMEN

The ATP binding cassette (ABC) transporters ABCG2 and ABCB1 perform ATP hydrolysis-dependent efflux of structurally highly diverse compounds, collectively called allocrites. Whereas much is known about allocrite-ABCB1 interactions, the chemical nature and strength of ABCG2-allocrite interactions have not yet been assessed. We quantified and characterized interactions of allocrite with ABCG2 and ABCB1 using a set of 39 diverse compounds. We also investigated potential allocrite binding sites based on available transporter structures and structural models. We demonstrate that ABCG2 binds its allocrites from the lipid membrane, despite their hydrophilicity. Hence, binding of allocrite to both transporters is a two-step process, starting with a lipid-water partitioning step, driven mainly by hydrophobic interactions, followed by a transporter binding step in the lipid membrane. We show that binding of allocrite to both transporters increases with the number of hydrogen bond acceptors in allocrites. Scrutinizing the transporter translocation pathways revealed ample hydrogen bond donors for allocrite binding. Importantly, the hydrogen bond donor strength is, on average, higher in ABCG2 than in ABCB1, which explains the higher measured affinity of allocrite for ABCG2. π-π stacking and π-cation interactions play additional roles in binding of allocrite to ABCG2 and ABCB1. With this analysis, we demonstrate that these membrane-mediated weak electrostatic interactions between transporters and allocrites allow for transporter promiscuity toward allocrites. The different sensitivities of the transporters to allocrites' charge and amphiphilicity provide transporter specificity. In addition, we show that the different hydrogen bond donor strengths in the two transporters allow for affinity tuning.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/química , Animales , Línea Celular , Humanos , Enlace de Hidrógeno , Hidrólisis , Ratones , Modelos Moleculares , Proteínas de Neoplasias/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Conformación Proteica , Termodinámica
5.
FASEB J ; 28(10): 4335-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25016028

RESUMEN

For a primary active pump, such as the human ATP-binding-cassette (ABC) transporter ABCB1, coupling of drug-binding by the two transmembrane domains (TMDs) to the ATP catalytic cycle of the two nucleotide-binding domains (NBDs) is fundamental to the transport mechanism, but is poorly understood at the biochemical level. Structure data suggest that signals are transduced through intracellular loops of the TMDs that slot into grooves on the NBDs. At the base of these grooves is the Q loop. We therefore mutated the eponymous glutamine in one or both NBD Q loops and measured the effect on conformation and function by using a conformation-sensitive antibody (UIC2) and a fluorescent drug (Bodipy-verapamil), respectively. We showed that the double mutant is trapped in the inward-open state, which binds the drug, but cannot couple to the ATPase cycle. Our data also describe marked redundancy within the transport mechanism, because single-Q-loop mutants are functional for Bodipy-verapamil transport. This result allowed us to elucidate transduction pathways from twin drug-binding cavities to the Q loops using point mutations to favor one cavity over the other. Together, the data show that the Q loop is the central flexion point where the aspect of the drug-binding cavities is coupled to the ATP catalytic cycle.


Asunto(s)
Adenosina Trifosfato/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico Activo , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutación Puntual , Unión Proteica , Verapamilo/farmacología
6.
Mol Pharm ; 12(11): 4026-37, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26372856

RESUMEN

Colocalized in membrane barriers, the ABC transporters ABCB1 and ABCG2 strongly contribute to multidrug resistance (MDR). Here we investigate the as yet unknown mechanisms of activation and inhibition of ABCG2. For this purpose we measured the ATPase activity of ABCG2 and ABCB1 as a function of allocrite concentration using a calibration set of 30 diverse compounds and a validation set of 23 compounds. We demonstrate that ABCG2 is activated at low and inhibited at high allocrite concentrations, yielding bell-shaped activity curves. With an ATP regeneration assay we prove that the inhibitory part is indeed due to a decrease in activity because of high allocrite load in the transporter. However, inhibition is only observed if the membrane solubility of allocrites is sufficiently high. The concentrations of half-maximum activation and inhibition are at least 10-fold lower for ABCG2 than for ABCB1. Because ABCG2 binds its allocrites with higher affinity than ABCB1, it can extract hydrophilic, nonamphiphilic, and highly charged compounds out of the lipid membrane, typically exhibiting low lipid-water partition coefficients, but is inhibited by hydrophobic, amphiphilic, and moderately charged compounds, with high lipid-water partition coefficients. In contrast, ABCB1 is barely interacting with hydrophilic compounds, but is activated by hydrophobic compounds. We show that hydrophobicity, amphiphilicity, and charge have a dual role; they predict, on the one hand, allocrites' lipid-water partition coefficient and, on the other hand, the transporters' preference for the chemical nature of allocrites. Parameters reflecting hydrophobicity, amphiphilicity, and charge are therefore sufficient for differentiating between allocrites, activators, and inhibitors of ABCB1 and ABCG2.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Embrión de Mamíferos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Proteínas de Neoplasias/química , Preparaciones Farmacéuticas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Células Cultivadas , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Proteínas de Neoplasias/metabolismo
7.
Biochemistry ; 52(19): 3297-309, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23600489

RESUMEN

The ATP-binding cassette exporters Sav1866 from Staphylococcus aureus and P-glycoprotein are known to share a certain sequence similarity and disposition for cationic allocrites. Conversely, the two ATPases react very differently to neutral detergents that have previously been shown to be inhibitory allocrites for P-glycoprotein. To gain insight into the functional differences of the two proteins, we compared their basal and detergent-stimulated ATPase activity. P-Glycoprotein was investigated in NIH-MDR1-G185 plasma membrane vesicles and Sav1866 in lipid vesicles exhibiting a membrane packing density and a surface potential similar to those of the plasma membrane vesicles. Under basal conditions, Sav1866 revealed a lower catalytic efficiency and concomitantly a more pronounced sodium chloride and pH dependence than P-glycoprotein. As expected, the cationic allocrites (alkyltrimethylammonium chlorides) induced similar bell-shaped activity curves as a function of concentration for both exporters, suggesting stimulation upon binding of the first and inhibition upon binding of the second allocrite molecule. However, the neutral allocrites (n-alkyl-ß-d-maltosides and n-ethylene glycol monododecyl ethers) reduced P-glycoprotein's ATPase activity at concentrations well below their critical micelle concentration (CMC) but strongly enhanced Sav1866's ATPase activity even at concentrations above their CMC. The lack of ATPase inhibition at high concentrations of neutral of detergents could be explained by their comparatively low binding affinity for the transmembrane domains of Sav1866, which seems to prevent binding of a second inhibitory molecule. The high ATPase activity in the presence of hydrophobic, long chain detergents moreover revealed that Sav1866, despite its lower basal catalytic efficiency, is a more efficient floppase for lipidlike amphiphiles than P-glycoprotein.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dicroismo Circular , Detergentes , Humanos , Concentración de Iones de Hidrógeno , Cinética , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Salinidad , Homología de Secuencia de Aminoácido , Staphylococcus aureus/genética , Termodinámica , Vanadatos/farmacología
8.
Mol Pharm ; 10(6): 2340-9, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23617680

RESUMEN

One hypothesis for persisting HIV-associated neurocognitive disorders (HAND) in effectively treated individuals is the limited permeation of antiretroviral agents (ARV) across the blood-brain barrier (BBB). However, the physicochemical factors limiting the brain entry of a given ARV and the mutual interactions of combined drugs on their brain entry have not been properly characterized. Using transporter kinetic measurements, we show that large lipophilic drugs such as protease inhibitors (PI) have strong binding affinities to drug efflux transporters expressed at the BBB and thus are prevented from entering the brain. However, when combined, the PI with the highest binding affinity (i.e., boosting ritonavir) will occupy a large proportion of the transporter binding sites and thus slow down the efflux rate of the coadministered PI thereby facilitating its brain entry. Furthermore, using thermodynamic measurements and computational modeling, we show that ARV with small cross-sectional areas (AD < 70 Å(2)) and octanol-water distribution coefficients (-1 < log D <5) such as most nucleoside analogues have a high passive influx and cross the BBB despite interactions with drug transporters. These data indicate that HIV therapies combining small diffusing molecules with large lipophilic molecules are better suited for brain entry and should be preferred for HAND. This work highlights the role of PI as modulators of drugs' brain entry.


Asunto(s)
Encéfalo/metabolismo , Inhibidores de la Proteasa del VIH/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Cinética , Ratones , Células 3T3 NIH , Ritonavir/metabolismo
9.
J Phys Chem B ; 127(39): 8296-8304, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37735883

RESUMEN

Chemical unfolding with guanidineHCl or urea is a common method to study the conformational stability of proteins. The analysis of unfolding isotherms is usually performed with an empirical linear extrapolation method (LEM). A large positive free energy is assigned to the native protein, which is usually considered to be a minimum of the free energy. The method thus contradicts common expectations. Here, we present a multistate cooperative model that addresses specifically the binding of the denaturant to the protein and the cooperativity of the protein unfolding equilibrium. The model is based on a molecular statistical-mechanical partition function of the ensemble, but simple solutions for the calculation of the binding isotherm and the associated free energy are presented. The model is applied to 23 published unfolding isotherms of small and large proteins. For a given denaturant, the binding constant depends on temperature and pH but shows little protein specificity. Chemical unfolding is less cooperative than thermal unfolding. The cooperativity parameter σ is at least 2 orders of magnitude larger than that of thermal unfolding. The multistate cooperative model predicts zero free energy for the native protein, which becomes strongly negative beyond the midpoint concentration of unfolding. The free energy to unfold a cooperative unit corresponds exactly to the diffusive energy of the denaturant concentration gradient necessary for unfolding. The temperature dependence of unfolding isotherms yields the denaturant-induced unfolding entropy and, in turn, the unfolding enthalpy. The multistate cooperative model provides molecular insight and is as simple to apply as the LEM but avoids the conceptual difficulties of the latter.

10.
J Phys Chem B ; 127(15): 3352-3363, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37040567

RESUMEN

Protein stability is important in many areas of life sciences. Thermal protein unfolding is investigated extensively with various spectroscopic techniques. The extraction of thermodynamic properties from these measurements requires the application of models. Differential scanning calorimetry (DSC) is less common, but is unique as it measures directly a thermodynamic property, that is, the heat capacity Cp(T). The analysis of Cp(T) is usually performed with the chemical equilibrium two-state model. This is not necessary and leads to incorrect thermodynamic consequences. Here we demonstrate a straightforward model-independent evaluation of heat capacity experiments in terms of protein unfolding enthalpy ΔH(T), entropy ΔS(T), and free energy ΔG(T)). This now allows the comparison of the experimental thermodynamic data with the predictions of different models. We critically examined the standard chemical equilibrium two-state model, which predicts a positive free energy for the native protein, and diverges distinctly from the experimental temperature profiles. We propose two new models which are equally applicable to spectroscopy and calorimetry. The ΘU(T)-weighted chemical equilibrium model and the statistical-mechanical two-state model provide excellent fits of the experimental data. They predict sigmoidal temperature profiles for enthalpy and entropy, and a trapezoidal temperature profile for the free energy. This is illustrated with experimental examples for heat and cold denaturation of lysozyme and ß-lactoglobulin. We then show that the free energy is not a good criterion to judge protein stability. More useful parameters are discussed, including protein cooperativity. The new parameters are embedded in a well-defined thermodynamic context and are amenable to molecular dynamics calculations.


Asunto(s)
Calor , Proteínas , Desnaturalización Proteica , Proteínas/química , Termodinámica , Frío , Desplegamiento Proteico , Rastreo Diferencial de Calorimetría , Pliegue de Proteína
11.
Cancer Drug Resist ; 6(1): 1-29, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37070101

RESUMEN

P-glycoprotein (ABCB1) is the first discovered mammalian member of the large family of ATP binding cassette (ABC) transporters. It facilitates the movement of compounds (called allocrites) across membranes, using the energy of ATP binding and hydrolysis. Here, we review the thermodynamics of allocrite binding and the kinetics of ATP hydrolysis by ABCB1. In combination with our previous molecular dynamics simulations, these data lead to a new model for allocrite transport by ABCB1. In contrast to previous models, we take into account that the transporter was evolutionarily optimized to operate within a membrane, which dictates the nature of interactions. Hydrophobic interactions drive lipid-water partitioning of allocrites, the transport process's first step. Weak dipolar interactions (including hydrogen bonding, π-π stacking, and π-cation interactions) drive allocrite recognition, binding, and transport by ABCB1 within the membrane. Increasing the lateral membrane packing density reduces allocrite partitioning but enhances dipolar interactions between allocrites and ABCB1. Allocrite flopping (or reorientation of the polar part towards the extracellular aqueous phase) occurs after hydrolysis of one ATP molecule and opening of ABCB1 at the extracellular side. Rebinding of ATP re-closes the transporter at the extracellular side and expels the potentially remaining allocrite into the membrane. The high sensitivity of the steady-state ATP hydrolysis rate to the nature and number of dipolar interactions, as well as to the dielectric constant of the membrane, points to a flopping process, which occurs to a large extent at the membrane-transporter interface. The proposed unidirectional ABCB1 transport cycle, driven by weak dipolar interactions, is consistent with membrane biophysics.

12.
Biophys J ; 102(6): 1383-93, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22455921

RESUMEN

P-glycoprotein-ATPase is an efflux transporter of broad specificity that counteracts passive allocrit influx. Understanding the rate of allocrit transport therefore matters. Generally, the rates of allocrit transport and ATP hydrolysis decrease exponentially with increasing allocrit affinity to the transporter. Here we report unexpectedly strong down-modulation of the P-glycoprotein-ATPase by certain detergents. To elucidate the underlying mechanism, we chose 34 electrically neutral and cationic detergents with different hydrophobic and hydrophilic characteristics. Measurement of the P-glycoprotein-ATPase activity as a function of concentration showed that seven detergents activated the ATPase as expected, whereas 27 closely related detergents reduced it significantly. Assessment of the free energy of detergent partitioning into the lipid membrane and the free energy of detergent binding from the membrane to the transporter revealed that the ratio, q, of the two free energies of binding determined the rate of ATP hydrolysis. Neutral (cationic) detergents with a ratio of q = 2.7 ± 0.2 (q > 3) followed the aforementioned exponential dependence. Small deviations from the optimal ratio strongly reduced the rates of ATP hydrolysis and flopping, respectively, whereas larger deviations led to an absence of interaction with the transporter. P-glycoprotein-ATPase inhibition due to membrane disordering by detergents could be fully excluded using (2)H-NMR-spectroscopy. Similar principles apply to modulating drugs.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Modelos Moleculares , Aire , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Detergentes/farmacología , Cinética , Lípidos/química , Espectroscopía de Resonancia Magnética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Termodinámica , Liposomas Unilamelares/metabolismo
14.
Antimicrob Agents Chemother ; 56(7): 3535-43, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22508302

RESUMEN

ABCG2/BCRP is an ATP-binding cassette transporter that extrudes compounds from cells in the intestine, liver, kidney, and other organs, such as the mammary gland, affecting pharmacokinetics and milk secretion of antibiotics, anticancer drugs, and other compounds and mediating drug-drug interactions. In addition, ABCG2 expression in cancer cells may directly cause resistance by active efflux of anticancer drugs. The development of ABCG2 modulators is critical in order to improve drug pharmacokinetic properties, reduce milk secretion of xenotoxins, and/or increase the effective intracellular concentrations of substrates. Our purpose was to determine whether the anthelmintic triclabendazole (TCBZ) and its main plasma metabolites triclabendazole sulfoxide (TCBZSO) and triclabendazole sulfone (TCBZSO(2)) inhibit ABCG2 activity. ATPase assays using human ABCG2-enriched membranes demonstrated a clear ABCG2 inhibition exerted by these compounds. Mitoxantrone accumulation assays using murine Abcg2- and human ABCG2-transduced MDCK-II cells confirmed that TCBZSO and TCBZSO(2) are ABCG2 inhibitors, reaching inhibitory potencies between 40 and 55% for a concentration range from 5 to 25 µM. Transepithelial transport assays of ABCG2 substrates in the presence of both TCBZ metabolites at 15 µM showed very efficient inhibition of the Abcg2/ABCG2-mediated transport of the antibacterial agents nitrofurantoin and danofloxacin. TCBZSO administration also inhibited nitrofurantoin Abcg2-mediated secretion into milk by more than 2-fold and increased plasma levels of the sulfonamide sulfasalazine by more than 1.5-fold in mice. These results support the potential role of TCBZSO and TCBZSO(2) as ABCG2 inhibitors to participate in drug interactions and modulate ABCG2-mediated pharmacokinetic processes.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antihelmínticos/farmacología , Bencimidazoles/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Perros , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Sulfóxidos/farmacología , Triclabendazol
15.
Biophys Rep (N Y) ; 2(1): 100037, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36425081

RESUMEN

Testing and predicting protein stability gained importance because proteins, including antibodies, became pharmacologically relevant in viral and cancer therapies. Isothermal scanning calorimetry is the principle method to study protein stability. Here, we use the excellent experimental heat capacity Cp(T) data from the literature for a critical inspection of protein unfolding as well as for the test of a new cooperative model. In the relevant literature, experimental temperature profiles of enthalpy, Hcal(T), entropy, Scal(T), and free energy, Gcal(T) are missing. First, we therefore calculate the experimental Hcal(T), Scal(T), and Gcal(T) from published Cp(T) thermograms. Considering only the unfolding transition proper, the heat capacity and all thermodynamic functions are zero in the region of the native protein. In particular, the free energy of the folded proteins is also zero and Gcal(T) displays a trapezoidal temperature profile when cold denaturation is included. Second, we simulate the DSC-measured thermodynamic properties with a new molecular model based on statistical-mechanical thermodynamics. The model quantifies the protein cooperativity and predicts the aggregate thermodynamic variables of the system with molecular parameters only. The new model provides a perfect simulation of all thermodynamic properties, including the observed trapezoidal Gcal(T) temperature profile. Importantly, the new cooperative model can be applied to a broad range of protein sizes, including antibodies. It predicts not only heat and cold denaturation but also provides estimates of the unfolding kinetics and allows a comparison with molecular dynamics calculations and quasielastic neutron scattering experiments.

16.
Biochim Biophys Acta ; 1798(3): 515-25, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20004641

RESUMEN

We compared the P-glycoprotein ATPase activity in inside-out plasma membrane vesicles and living NIH-MDR1-G185 cells with the aim to detect substrate transport. To this purpose we used six substrates which differ significantly in their passive influx through the plasma membrane. In cells, the cytosolic membrane leaflet harboring the substrate binding site of P-glycoprotein has to be approached by passive diffusion through the lipid membrane, whereas in inside-out plasma membrane vesicles, it is accessible directly from the aqueous phase. Compounds exhibiting fast passive influx compared to active efflux by P-glycoprotein induced similar ATPase activity profiles in cells and inside-out plasma membrane vesicles, because their concentrations in the cytosolic leaflets were similar. Compounds exhibiting similar influx as efflux induced in contrast different ATPase activity profiles in cells and inside-out vesicles. Their concentration was significantly lower in the cytosolic leaflet of cells than in the cytosolic leaflet of inside-out membrane vesicles, indicating that P-glycoprotein could cope with passive influx. P-glycoprotein thus transported all compounds at a rate proportional to ATP hydrolysis (i.e. all compounds were substrates). However, it prevented substrate entry into the cytosol only if passive influx of substrates across the lipid bilayer was in a similar range as active efflux.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Vesículas Transportadoras/enzimología , Ácidos , Aire , Animales , Transporte Biológico/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclosporina/farmacología , Detergentes/farmacología , Espacio Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Humanos , Ratones , Micelas , Células 3T3 NIH , Permeabilidad/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Factores de Tiempo , Transfección , Agua
17.
Biophys J ; 99(11): 3589-98, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21112283

RESUMEN

P-glycoprotein (ABCB1) moves allocrits from the cytosolic to the extracellular membrane leaflet, preventing their intrusion into the cytosol. It is generally accepted that allocrit binding from water to the cavity lined by the transmembrane domains occurs in two steps, a lipid-water partitioning step, and a cavity-binding step in the lipid membrane, whereby hydrogen-bond (i.e., weak electrostatic) interactions play a crucial role. The remaining key question was whether hydrophobic interactions also play a role for allocrit binding to the cavity. To answer this question, we chose polyoxyethylene alkyl ethers, C(m)EO(n), varying in the number of methylene and ethoxyl residues as model allocrits. Using isothermal titration calorimetry, we showed that the lipid-water partitioning step was purely hydrophobic, increasing linearly with the number of methylene, and decreasing with the number of ethoxyl residues, respectively. Using, in addition, ATPase activity measurements, we demonstrated that allocrit binding to the cavity required minimally two ethoxyl residues and increased linearly with the number of ethoxyl residues. The analysis provides the first direct evidence, to our knowledge, that allocrit binding to the cavity is purely electrostatic, apparently without any hydrophobic contribution. While the polar part of allocrits forms weak electrostatic interactions with the cavity, the hydrophobic part seems to remain associated with the lipid membrane. The interplay between the two types of interactions is most likely essential for allocrit flipping.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Polietilenglicoles/farmacología , Adenosina Trifosfatasas/metabolismo , Animales , Sitios de Unión , Detergentes/química , Modelos Lineales , Lípidos/química , Ratones , Unión Proteica/efectos de los fármacos , Termodinámica , Agua/química
18.
Biochim Biophys Acta ; 1788(10): 2335-44, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19631191

RESUMEN

We assessed the interaction of three electrically neutral detergents (Triton X-100, C(12)EO(8), and Tween 80) with P-glycoprotein (ABCB1, MDR1) and identified the molecular elements responsible for this interaction. To this purpose we titrated P-glycoprotein in inside-out plasma membrane vesicles of MDR1-transfected mouse embryo fibroblasts (NIH-MDR1-G185) with the detergents below their critical micelle concentration, CMC. The P-glycoprotein ATPase measured as a function of the detergent concentration yielded bell-shaped activity curves which were evaluated with a two-site binding model. The lipid-water partition coefficient and the transporter-water binding constant of the detergents were measured independently. Knowledge of these two parameters allowed assessment of the free energy of detergent binding to P-glycoprotein in the lipid membrane, DeltaG(tl)(0), that reflects the direct detergent-transporter affinity. It increased as the number of ethoxyl groups increased, suggesting that these hydrogen bond acceptor groups are the key elements for the detergent-transporter interaction in the lipid membrane. The free energy of binding to P-glycoprotein per ethoxyl group (EO) was determined as approximately DeltaG(EO)(0)=-1.6 kJ/mol. The present findings moreover document that, depending on the concentration applied, detergents are intrinsic substrates for, or inhibitors of P-glycoprotein.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Detergentes/farmacología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Animales , Unión Competitiva , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Ciclosporina/farmacología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Inhibidores Enzimáticos/farmacología , Fibroblastos/metabolismo , Cinética , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Ratones , Micelas , Verapamilo/farmacología
19.
Front Oncol ; 10: 576559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194688

RESUMEN

P-glycoprotein or multidrug resistance protein (MDR1) is an adenosine triphosphate (ATP) binding cassette transporter (ABCB1) intensely investigated because it is an obstacle to successful pharmacotherapy of cancers. P-glycoprotein prevents cellular uptake of a large number of structurally and functionally diverse compounds, including most cancer therapeutics and in this way causes multidrug resistance (MDR). To overcome MDR, and thus improve cancer treatment, an understanding of P-glycoprotein inhibition at the molecular level is required. With this goal in mind, we propose rules that predict whether a compound is a modulator, substrate, inhibitor, or inducer of P-glycoprotein. This new set of rules is derived from a quantitative analysis of the drug binding and transport properties of P-glycoprotein. We further discuss the role of P-glycoprotein in immune surveillance and cell metabolism. Finally, the predictive power of the proposed rules is demonstrated with a set of FDA approved drugs which have been repurposed for cancer therapy.

20.
Biochemistry ; 47(38): 10197-207, 2008 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-18759452

RESUMEN

P-glycoprotein (ABCB1) prevents absorption (e.g., blood-brain barrier) or enhances excretion (e.g., kidney) by moving substrates from the cytosolic to the extracellular membrane leaflet at the expense of ATP hydrolysis. It translocates various drugs and functions in membranes exhibiting different lateral packing densities. To gain more functional insight, we measured the temperature dependence of the P-glycoprotein ATPase activity in NIH-MDR1-G185 cell membranes in the absence and presence of three drugs (promazine, verapamil, and PSC833), exhibiting significantly different transporter affinities. Activation enthalpies (Delta H(++)) and entropies ( TDelta S(++)) were derived from Eyring plots. In the absence of drugs, the activation enthalpy and the free energy of activation for P-glycoprotein ATPase activity was determined as Delta H(++) = 92.6 +/- 4.2 kJ/mol and Delta G(++) = 73.1 +/- 7.2 kJ/mol, respectively. Increasing the drug concentration reduced the activation enthalpy, whereby the drug with the highest transporter affinity had the strongest effect (DeltaDelta H(++) = -21%). The free energy of activation decreased for activating (DeltaDelta G(++) = approximately -3.8%) and increased for inhibitory compounds (DeltaDelta G(++) = approximately +0.7%). The drug-specific changes of the free energy of activation are thus barely above thermal energy. A comparison with literature data revealed that a decrease of the lateral membrane packing density reduces the enthalpic and the entropic contribution to the free energy of activation. Although the P-glycoprotein ATPase activity increases only slightly with decreasing lateral membrane packing density, the mode of action changes from strongly entropy-driven at high, to essentially enthalpy-driven at low packing densities. This suggests that the transporter and the membrane form a functional entity.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Animales , Catálisis , Membrana Celular/química , Sistemas de Liberación de Medicamentos , Activación Enzimática/fisiología , Ratones , Células 3T3 NIH , Especificidad por Sustrato/fisiología , Termodinámica , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA