RESUMEN
Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.
Asunto(s)
Ácido Egtácico/análogos & derivados , Degeneración Retiniana , Sirtuinas , Ratones , Animales , Degeneración Retiniana/metabolismo , Calpaína/metabolismo , Intercambiador de Sodio-Calcio , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología , Muerte Celular , Sirtuinas/metabolismoRESUMEN
Serum response factor (SRF) controls the expression of muscle contraction and motility genes in mural cells (MCs) of the vasculature. In the retina, MC-SRF is important for correct angiogenesis during development and the continuing maintenance of the vascular tone. The purpose of this study was to provide further insights into the effects of MC SRF deficiency on the vasculature and function of the mature retina in SrfiMCKO mice that carry a MC-specific deletion of Srf. Retinal morphology and vascular integrity were analyzed in vivo via scanning laser ophthalmoscopy (SLO), angiography, and optical coherence tomography (OCT). Retinal function was evaluated with full-field electroretinography (ERG). We found that retinal blood vessels of these mutants exhibited different degrees of morphological and functional alterations. With increasing severity, we found vascular bulging, the formation of arteriovenous (AV) anastomoses, and ultimately, a retinal detachment (RD). The associated irregular retinal blood pressure and flow distribution eventually induced hypoxia, indicated by a negative ERG waveform shape. Further, the high frequency of interocular differences in the phenotype of individual SrfiMCKO mice points to a secondary nature of these developments far downstream of the genetic defect and rather dependent on the local retinal context.
Asunto(s)
Desprendimiento de Retina , Factor de Respuesta Sérica , Animales , Ratones , Factor de Respuesta Sérica/genética , Retina , Vasos Retinianos , AngiografíaRESUMEN
Most inherited blinding diseases are characterized by compromised retinal function and progressive degeneration of photoreceptors. However, the factors that affect the life span of photoreceptors in such degenerative retinal diseases are rather poorly understood. Here, we explore the role of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) in this context. HCN1 is known to adjust retinal function under mesopic conditions, and although it is expressed at high levels in rod and cone photoreceptor inner segments, no association with any retinal disorder has yet been found. We investigated the effects of an additional genetic deletion of HCN1 on the function and survival of photoreceptors in a mouse model of CNGB1-linked retinitis pigmentosa (RP). We found that the absence of HCN1 in Cngb1 knockout (KO) mice exacerbated photoreceptor degeneration. The deleterious effect was reduced by expression of HCN1 using a viral vector. Moreover, pharmacological inhibition of HCN1 also enhanced rod degeneration in Cngb1 KO mice. Patch-clamp recordings revealed that the membrane potentials of Cngb1 KO and Cngb1/Hcn1 double-KO rods were both significantly depolarized. We also found evidence for altered calcium homeostasis and increased activation of the protease calpain in Cngb1/Hcn1 double-KO mice. Finally, the deletion of HCN1 also exacerbated degeneration of cone photoreceptors in a mouse model of CNGA3-linked achromatopsia. Our results identify HCN1 as a major modifier of photoreceptor degeneration and suggest that pharmacological inhibition of HCN channels may enhance disease progression in RP and achromatopsia patients.
Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Retinitis Pigmentosa/patología , Animales , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/metabolismo , Defectos de la Visión Cromática/patología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Retina/metabolismo , Retina/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Visión OcularRESUMEN
Mutations in the PDE6A gene can cause rod photoreceptors degeneration and the blinding disease retinitis pigmentosa (RP). While a number of pathogenic PDE6A mutations have been described, little is known about their impact on compound heterozygous situations and potential interactions of different disease-causing alleles. Here, we used a novel mouse model for the Pde6a R562W mutation in combination with an existing line carrying the V685M mutation to generate compound heterozygous Pde6a V685M/R562W animals, exactly homologous to a case of human RP. We compared the progression of photoreceptor degeneration in these compound heterozygous mice with the homozygous V685M and R562W mutants, and additionally with the D670G line that is known for a relatively mild phenotype. We investigated PDE6A expression, cyclic guanosine mono-phosphate accumulation, calpain and caspase activity, in vivo retinal function and morphology, as well as photoreceptor cell death and survival. This analysis confirms the severity of different Pde6a mutations and indicates that compound heterozygous mutants behave like intermediates of the respective homozygous situations. Specifically, the severity of the four different Pde6a situations may be categorized by the pace of photoreceptor degeneration: V685M (fastest) > V685M/R562W > R562W > D670G (slowest). While calpain activity was strongly increased in all four mutants, caspase activity was not. This points to the execution of non-apoptotic cell death and may lead to the identification of new targets for therapeutic interventions. For individual RP patients, our study may help to predict time-courses for Pde6a-related retinal degeneration and thereby facilitate the definition of a window-of-opportunity for clinical interventions.
Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Mutación Puntual , Retina/fisiopatología , Retinitis Pigmentosa/patología , Animales , Calpaína/metabolismo , Caspasas/metabolismo , Supervivencia Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Retina/metabolismo , Retina/patología , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/fisiopatologíaRESUMEN
Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3',5'-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h(-/-)) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h(-/-) retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h(-/-) mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system.
Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fototransducción/genética , Subunidades de Proteína/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , 3',5'-GMP Cíclico Fosfodiesterasas , Animales , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/metabolismo , Defectos de la Visión Cromática/patología , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Electrorretinografía , Eliminación de Gen , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Subunidades de Proteína/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Bastones/citología , Transducción de Señal , Especificidad de la EspecieRESUMEN
Mutations in the CRB1 gene lead to retinal dystrophies ranging from Leber congenital amaurosis (LCA) to early-onset retinitis pigmentosa (RP), due to developmental defects or loss of adhesion between photoreceptors and Müller glia cells, respectively. Whereas over 150 mutations have been found, no clear genotype-phenotype correlation has been established. Mouse Crb1 knockout retinas show a mild phenotype limited to the inferior quadrant, whereas Crb2 knockout retinas display a severe degeneration throughout the retina mimicking the phenotype observed in RP patients associated with CRB1 mutations. Crb1Crb2 double mutant retinas have severe developmental defects similar to the phenotype observed in LCA patients associated with CRB1 mutations. Therefore, CRB2 is a candidate modifying gene of human CRB1-related retinal dystrophy. In this study, we studied the cellular localization of CRB1 and CRB2 in human retina and tested the influence of the Crb2 gene allele on Crb1-retinal dystrophies in mice. We found that in contrast to mice, in the human retina CRB1 protein was expressed at the subapical region in photoreceptors and Müller glia cells, and CRB2 only in Müller glia cells. Genetic ablation of one allele of Crb2 in heterozygote Crb1(+/-) retinas induced a mild retinal phenotype, but in homozygote Crb1 knockout mice lead to an early and severe phenotype limited to the entire inferior retina. Our data provide mechanistic insight for CRB1-related LCA and RP.
Asunto(s)
Proteínas Portadoras/metabolismo , Células Ependimogliales/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Distrofias Retinianas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Técnicas de Inactivación de Genes , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Células Fotorreceptoras/metabolismoRESUMEN
In humans, the Crumbs homolog-1 (CRB1) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and consequent removal from Müller glial and photoreceptor cells, results in severe and progressive retinal degeneration with concomitant loss of retinal function that mimics retinitis pigmentosa due to mutations in the CRB1 gene. Here, we studied the effects of cell-type-specific loss of CRB2 from the developing mouse retina using targeted conditional deletion of Crb2 in photoreceptors or Müller cells. We analyzed the consequences of targeted loss of CRB2 in the adult mouse retina using adeno-associated viral vectors encoding Cre recombinase and short hairpin RNA against Crb2. In vivo retinal imaging by means of optical coherence tomography on retinas lacking CRB2 in photoreceptors showed progressive thinning of the photoreceptor layer and cellular mislocalization. Electroretinogram recordings under scotopic conditions showed severe attenuation of the a-wave, confirming the degeneration of photoreceptors. Retinas lacking CRB2 in developing photoreceptors showed early onset of abnormal lamination, whereas retinas lacking CRB2 in developing Müller cells showed late onset retinal disorganization. Our data suggest that in the developing retina, CRB2 has redundant functions in Müller glial cells, while CRB2 has essential functions in photoreceptors. Our data suggest that short-term loss of CRB2 in adult mouse photoreceptors, but not in Müller glial cells, causes sporadic loss of adhesion between photoreceptors and Müller cells.
Asunto(s)
Proteínas de la Membrana/metabolismo , Células Fotorreceptoras/metabolismo , Retinitis Pigmentosa/etiología , Retinitis Pigmentosa/metabolismo , Animales , Células Ependimogliales/metabolismo , Femenino , Inmunohistoquímica , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Retinitis Pigmentosa/genéticaRESUMEN
Mutations in CACNA1F encoding the α1-subunit of the retinal Cav1.4 L-type calcium channel have been linked to Cav1.4 channelopathies including incomplete congenital stationary night blindness type 2A (CSNB2), Åland Island eye disease (AIED) and cone-rod dystrophy type 3 (CORDX3). Since CACNA1F is located on the X chromosome, Cav1.4 channelopathies are typically affecting male patients via X-chromosomal recessive inheritance. Occasionally, clinical symptoms have been observed in female carriers, too. It is currently unknown how these mutations lead to symptoms in carriers and how the retinal network in these females is affected. To investigate these clinically important issues, we compared retinal phenotypes in Cav1.4-deficient and Cav1.4 heterozygous mice and in human female carrier patients. Heterozygous Cacna1f carrier mice have a retinal mosaic consistent with differential X-chromosomal inactivation, characterized by adjacent vertical columns of affected and non-affected wild-type-like retinal network. Vertical columns in heterozygous mice are well comparable to either the wild-type retinal network of normal mice or to the retina of homozygous mice. Affected retinal columns display pronounced rod and cone photoreceptor synaptopathy and cone degeneration. These changes lead to vastly impaired vision-guided navigation under dark and normal light conditions and reduced retinal electroretinography (ERG) responses in Cacna1f carrier mice. Similar abnormal ERG responses were found in five human CACNA1F carriers, four of which had novel mutations. In conclusion, our data on Cav1.4 deficient mice and human female carriers of mutations in CACNA1F are consistent with a phenotype of mosaic CSNB2.
Asunto(s)
Canales de Calcio/genética , Enfermedades Hereditarias del Ojo/patología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Miopía/patología , Ceguera Nocturna/patología , Retina/patología , Células Fotorreceptoras Retinianas Conos/patología , Animales , Canales de Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Enfermedades Hereditarias del Ojo/genética , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Heterocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Mutación Missense , Miopía/genética , Ceguera Nocturna/genética , Fenotipo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Cromosoma X , Inactivación del Cromosoma XRESUMEN
Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.
Asunto(s)
Proteína Ácida Fibrilar de la Glía/genética , Retina/fisiopatología , Vimentina/genética , Animales , Supervivencia Celular , Electrorretinografía , Isquemia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Vasos Retinianos/fisiopatologíaRESUMEN
PURPOSE: Marked attenuation of the single-flash electroretinographic (ERG) b-wave in the presence of a normal-amplitude or less-attenuated a-wave is commonly referred to as the "negative ERG." The purpose of this study was to investigate whether the disparate origins of the negative ERG in three murine models can be discriminated using flickering stimuli. METHODS: Three models were selected: (1) the Nyx (nob) mouse model of complete congenital stationary night blindness, (2) the oxygen-induced retinopathy (OIR) rat model of retinopathy of prematurity (ROP), and (3) the Rs1 knockout (KO) mouse model of X-linked juvenile retinoschisis. Directly after a dark-adapted, single-flash ERG luminance series, a flicker ERG frequency series (0.5-30 Hz) was performed at a fixed luminance of 0.5 log cd s/m(2). This series includes frequency ranges that are dominated by activity in (A) the rod pathways (below 5 Hz), (B) the cone ON-pathway (5-15 Hz), and (C) the cone OFF-pathway (above 15 Hz). RESULTS: All three models produced markedly attenuated single-flash ERG b-waves. In the Nyx (nob) mouse, which features postsynaptic deficits in the ON-pathways, the a-wave was normal and flicker responses were attenuated in ranges A and B, but not C. The ROP rat is characterized by inner-retinal ischemia which putatively affects both ON- and OFF-bipolar cell activity; flicker responses were reduced in all ranges (A-C). Notably, the choroid supplies the photoreceptors and is thought to be relatively intact in OIR, an idea supported by the nearly normal a-wave. Finally, in the Rs1 KO mouse, which has documented abnormality of the photoreceptor-bipolar synapse affecting both ON- and OFF-pathways, the flicker responses were attenuated in all ranges (A-C). The a-wave was also attenuated, likely as a consequence to schisms in the photoreceptor layer. CONCLUSION: Consideration of both single-flash and flickering ERG responses can discriminate the functional pathology of the negative ERG in these animal models of human disease.
Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Miopía/fisiopatología , Ceguera Nocturna/fisiopatología , Retina/fisiopatología , Retinopatía de la Prematuridad/fisiopatología , Retinosquisis/fisiopatología , Animales , Animales Recién Nacidos , Adaptación a la Oscuridad , Electrorretinografía , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxígeno/toxicidad , Estimulación Luminosa , Ratas , Ratas Long-Evans , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Retinopatía de la Prematuridad/inducido químicamenteRESUMEN
Electroretinograms (ERGs) are commonly recorded at the cornea for an assessment of the functional status of the retina in mouse models. Full-field ERGs can be elicited by single-flash as well as flicker light stimulation although in most laboratories flicker ERGs are recorded much less frequently than singleflash ERGs. Whereas conventional single-flash ERGs contain information about layers, i.e., outer and inner retina, flicker ERGs permit functional assessment of the vertical pathways of the retina, i.e., rod system, cone ON-pathway, and cone OFF-pathway, when the responses are evoked at a relatively high luminance (0.5 log cd s/m(2)) with varying frequency (from 0.5 to 30 Hz) without any adapting background illumination. Therefore, both types of ERGs complement an in-depth functional characterization of the mouse retina, allowing for a discrimination of an underlying functional pathology. Here, we introduce the systematic interpretation of the single-flash and flicker ERGs by demonstrating several different patterns of functional phenotype in genetic mouse models, in which photoreceptors and/or bipolar cells are primarily or secondarily affected.
Asunto(s)
Adaptación a la Oscuridad/fisiología , Modelos Animales de Enfermedad , Electrorretinografía/métodos , Retina/fisiología , Animales , Adaptación a la Oscuridad/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Humanos , Luz , Iluminación , Ratones Noqueados , Estimulación Luminosa , Retina/metabolismo , Transducina/genética , Transducina/metabolismo , Visión Ocular/genética , Visión Ocular/fisiologíaRESUMEN
Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.
Asunto(s)
Sistema Nervioso Central/metabolismo , Amaurosis Congénita de Leber/genética , Proteínas de la Membrana/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Retina/crecimiento & desarrollo , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica , Humanos , Amaurosis Congénita de Leber/metabolismo , Amaurosis Congénita de Leber/patología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Mitosis/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Retina/citología , Retina/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Células Madre/metabolismoRESUMEN
In humans, the Crumbs homolog-1 (CRB1) gene is mutated in progressive types of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. However, there is no clear genotype-phenotype correlation for CRB1 mutations, which suggests that other components of the CRB complex may influence the severity of retinal disease. Therefore, to understand the physiological role of the Crumbs complex proteins, we generated and analysed conditional knockout mice lacking CRB2 in the developing retina. Progressive disorganization was detected during late retinal development. Progressive thinning of the photoreceptor layer and sites of cellular mislocalization was detected throughout the CRB2-deficient retina by confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Under scotopic conditions using electroretinography, the attenuation of the a-wave was relatively stronger than that of the b-wave, suggesting progressive degeneration of photoreceptors in adult animals. Histological analysis of newborn mice showed abnormal lamination of immature rod photoreceptors and disruption of adherens junctions between photoreceptors, Müller glia and progenitor cells. The number of late-born progenitor cells, rod photoreceptors and Müller glia cells was increased, concomitant with programmed cell death of rod photoreceptors. The data suggest an essential role for CRB2 in proper lamination of the photoreceptor layer and suppression of proliferation of late-born retinal progenitor cells.
Asunto(s)
Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Retina/metabolismo , Retinitis Pigmentosa/genética , Animales , Apoptosis , Secuencia de Bases , Cartilla de ADN , Electrorretinografía , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Fotorreceptoras de Vertebrados/patología , Reacción en Cadena de la Polimerasa , Retina/crecimiento & desarrollo , Retinitis Pigmentosa/patología , Tomografía de Coherencia ÓpticaRESUMEN
Retinitis pigmentosa (RP) is a group of genetically heterogeneous, severe retinal diseases commonly leading to legal blindness. Mutations in the CNGB1a subunit of the rod cyclic nucleotide-gated (CNG) channel have been found to cause RP in patients. Here, we demonstrate the efficacy of gene therapy as a potential treatment for RP by means of recombinant adeno-associated viral (AAV) vectors in the CNGB1 knockout (CNGB1(-/-)) mouse model. To enable efficient packaging and rod-specific expression of the relatively large CNGB1a cDNA (~4 kb), we used an AAV expression cassette with a short rod-specific promoter and short regulatory elements. After injection of therapeutic AAVs into the subretinal space of 2-week-old CNGB1(-/-) mice, we assessed the restoration of the visual system by analyzing (i) CNG channel expression and localization, (ii) retinal function and morphology and (iii) vision-guided behavior. We found that the treatment not only led to expression of full-length CNGB1a, but also restored normal levels of the previously degraded CNGA1 subunit of the rod CNG channel. Both proteins co-localized in rod outer segments and formed regular CNG channel complexes within the treated area of the CNGB1(-/-) retina, leading to significant morphological preservation and a delay of retinal degeneration. In the electroretinographic analysis, we also observed restoration of rod-driven light responses. Finally, treated CNGB1(-/-) mice performed significantly better than untreated mice in a rod-dependent vision-guided behavior test. In summary, this work provides a proof-of-concept for the treatment of rod channelopathy-associated RP by AAV-mediated gene replacement.
Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Proteínas del Tejido Nervioso/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Terapia Genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Segmento Externo de la Célula en Bastón/metabolismoRESUMEN
Vax2 is an eye-specific homeobox gene, the inactivation of which in mouse leads to alterations in the establishment of a proper dorsoventral eye axis during embryonic development. To dissect the molecular pathways in which Vax2 is involved, we performed a transcriptome analysis of Vax2(-/-) mice throughout the main stages of eye development. We found that some of the enzymes involved in retinoic acid (RA) metabolism in the eye show significant variations of their expression levels in mutant mice. In particular, we detected an expansion of the expression domains of the RA-catabolizing enzymes Cyp26a1 and Cyp26c1, and a downregulation of the RA-synthesizing enzyme Raldh3. These changes determine a significant expansion of the RA-free zone towards the ventral part of the eye. At postnatal stages of eye development, Vax2 inactivation led to alterations of the regional expression of the cone photoreceptor genes Opn1sw (S-Opsin) and Opn1mw (M-Opsin), which were significantly rescued after RA administration. We confirmed the above described alterations of gene expression in the Oryzias latipes (medaka fish) model system using both Vax2 gain- and loss-of-function assays. Finally, a detailed morphological and functional analysis of the adult retina in mutant mice revealed that Vax2 is necessary for intraretinal pathfinding of retinal ganglion cells in mammals. These data demonstrate for the first time that Vax2 is both necessary and sufficient for the control of intraretinal RA metabolism, which in turn contributes to the appropriate expression of cone opsins in the vertebrate eye.
Asunto(s)
Ojo/crecimiento & desarrollo , Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Opsinas/metabolismo , Tretinoina/metabolismo , Animales , Animales Modificados Genéticamente , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 26 del Citocromo P450 , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Hibridación in Situ , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Opsinas/genética , Oryzias/genética , Oryzias/crecimiento & desarrollo , Oryzias/metabolismo , Embarazo , Células Fotorreceptoras Retinianas Conos/metabolismo , Ácido Retinoico 4-Hidroxilasa , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismoRESUMEN
PURPOSE: In murine disease models, particularly in cases when retinal electrical activity is reduced, an event-related component becomes apparent that does not change with the stimulus intensity in electroretinogram (ERG) recordings. In this work, we show that this electric component is evoked by the sound of the flash discharge rather than the light flash itself. METHODS: Wild-type mice (C57BL/6), mice with rod function only (Cnga3 (-/-)), mice lacking any photoreceptor function (Cnga3 (-/-) rho (-/-)), and mice with no auditory function (Cdh23 (vAlb/vAlb) ) were examined with Xenon flash ERG systems. An acoustic noise generator was used to mask discharge sounds. RESULTS: ERG recording modalities were identified where usually no discernible response can be elicited. These include photopic conditions in Cnga3 (-/-) mice, photopic conditions together with very low stimulus intensities in C57BL/6 mice, and both scotopic and photopic conditions in Cnga3 (-/-) rho (-/-) mice. However, in all of these cases, small signals, featuring an initial a-wave like deflection at about 20 ms and a subsequent b-wave like deflection peaking at about 40 ms after the flash, were detected. In contrast, such signals could not be detected in deaf Cdh23 (vAlb/vAlb) mice. Furthermore, masking the Xenon discharge sound by continuous acoustic noise led to a loss of the event-related signals in a reversible manner. CONCLUSIONS: We could identify an auditory event-related component, presumably resembling auditory evoked potentials, as a major source of ERG signals of non-visual origin in mice. This finding may be of particular importance for the analysis and interpretation of ERG data in mice with reduced visual responses.
Asunto(s)
Electrorretinografía , Potenciales Evocados Auditivos/fisiología , Pérdida Auditiva/fisiopatología , Degeneración Retiniana/fisiopatología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estimulación Luminosa , Retina/fisiologíaRESUMEN
Retinitis pigmentosa (RP) is a severe retinal disease characterized by a progressive degeneration of rod photoreceptors and a secondary loss of cone function. Here, we used CNGB1-deficient (CNGB1(-/-)) mice, a mouse model for autosomal recessive RP, to evaluate the efficacy of adeno-associated virus (AAV) vector-mediated gene therapy for the treatment of RP. The treatment restored normal expression of rod CNG channels and rod-driven light responses in the CNGB1(-/-) retina. This led to a substantial delay of retinal degeneration and long-term preservation of retinal morphology. Finally, treated CNGB1(-/-) mice performed significantly better than untreated mice in a rod-dependent vision-guided behavior test. In summary, this study holds promise for the treatment of rod channelopathy-associated retinitis pigmentosa by AAV-mediated gene replacement.
Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Dependovirus/genética , Proteínas del Tejido Nervioso/genética , Recuperación de la Función/genética , Degeneración Retiniana/terapia , Células Fotorreceptoras Retinianas Bastones/fisiología , Retinitis Pigmentosa/terapia , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Visión Ocular/fisiologíaRESUMEN
In this work, we introduce a diurnal rodent, the Mongolian gerbil (Meriones unguiculatus) (MG) as an alternative to study retinal cone system physiology and pathophysiology in mice. The cone system is of particular importance, as it provides high-acuity and color vision and its impairment in retinal disorders is thus especially disabling. Despite their nocturnal lifestyle, mice are currently the most popular animals to study cone-related diseases due to the high availability of genetically modified models. However, the potential for successful translation of any cone-related results is limited due to the substantial differences in retinal organization between mice and humans. Alternatively, there are diurnal rodents such as the MG with a higher retinal proportion of cones and a macula-like specialized region for improved visual resolution, the visual streak. The focus of this work was the evaluation of the MG's cone system functionality using full-field electroretinography (ERG), together with a morphological assessment of its retinal/visual streak organization via angiography, optical coherence tomography (OCT), and photoreceptor immunohistochemistry. We found that rod system responses in MGs were comparable or slightly inferior to mice, while in contrast, cone system responses were much larger, more sensitive, and also faster than those in the murine counterparts, and in addition, it was possible to record sizeable ON and OFF ERG components. Morphologically, MG cone photoreceptor opsins were evenly distributed throughout the retina, while mice show a dorsoventral M- and S-opsin gradient. Additionally, each cone expressed a single opsin, in contrast to the typical co-expression of opsins in mice. Particular attention was given to the visual streak region, featuring a higher density of cones, elongated cone and rod outer segments (OSs), and an increased thickness of the inner and outer retinal layers in comparison to peripheral regions. In summary, our data render the MG a supreme model to investigate cone system physiology, pathophysiology, and to validate potential therapeutic strategies in that context.
RESUMEN
The modulatory role of large-conductance Ca(2+)-activated K(+) (BK) channels in the nervous system has been extensively studied. In the retina, it has been shown that BK channels play a pivotal role in modulating feedback from A17 amacrine cells to rod bipolar cells (RBCs). Here, we used electroretinography to examine the functional role of BK channels for rod and cone vision in the retina in vivo using a genetically engineered mouse lacking functional BK channels (Bk(-/-)). Under dark-adapted and light-adapted conditions, the lack of BK channels had no effect on photoreceptor activity, suggesting that these ion channels do not modulate photoreceptor responses. At the bipolar cell level, the ERG signals attributed to RBCs in Bk(-/-) mice were not different from those in wild-type mice at low scotopic stimulus intensities. However, at high scotopic and low mesopic stimulus intensities, close to RBC saturation, a significant reduction of ERG signals reflecting RBC activity was present in the Bk(-/-) retina. At higher mesopic stimulus intensities activating both RBCs and cone bipolar cells (CBCs), no difference in ERG signals between Bk(-/-) and wild-type mice was found. In photopic stimulus paradigms, activity of ON- and OFF-CBCs in Bk(-/-) and wild-type retinae was indistinguishable. These findings demonstrate that BK channels modulate visual responses in vivo at the bipolar cell level at intermediate stimulus conditions.