Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Stroke ; 55(5): 1370-1380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572656

RESUMEN

BACKGROUND: Mild chemical inhibition of mitochondrial respiration can confer resilience against a subsequent stroke or myocardial infarction, also known as preconditioning. However, the lack of chemicals that can safely inhibit mitochondrial respiration has impeded the clinical translation of the preconditioning concept. We previously showed that meclizine, an over-the-counter antivertigo drug, can toggle metabolism from mitochondrial respiration toward glycolysis and protect against ischemia-reperfusion injury in the brain, heart, and kidney. Here, we examine the mechanism of action of meclizine and report the efficacy and improved safety of the (S) enantiomer. METHODS: We determined the anoxic depolarization latency, tissue and neurological outcomes, and glucose uptake using micro-positron emission tomography after transient middle cerebral artery occlusion in mice pretreated (-17 and -3 hours) with either vehicle or meclizine. To exclude a direct effect on tissue excitability, we also examined spreading depression susceptibility. Furthermore, we accomplished the chiral synthesis of (R)- and (S)-meclizine and compared their effects on oxygen consumption and histamine H1 receptor binding along with their brain concentrations. RESULTS: Micro-positron emission tomography showed meclizine increases glucose uptake in the ischemic penumbra, providing the first in vivo evidence that the neuroprotective effect of meclizine indeed stems from its ability to toggle metabolism toward glycolysis. Consistent with reduced reliance on oxidative phosphorylation to sustain the metabolism, meclizine delayed anoxic depolarization onset after middle cerebral artery occlusion. Moreover, the (S) enantiomer showed reduced H1 receptor binding, a dose-limiting side effect for the racemate, but retained its effect on mitochondrial respiration. (S)-meclizine was at least as efficacious as the racemate in delaying anoxic depolarization onset and decreasing infarct volumes after middle cerebral artery occlusion. CONCLUSIONS: Our data identify (S)-meclizine as a promising new drug candidate with high translational potential as a chemical preconditioning agent for preemptive prophylaxis in patients with high imminent stroke or myocardial infarction risk.

2.
J Headache Pain ; 21(1): 86, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631251

RESUMEN

BACKGROUND: Migraine is a common headache disorder, with cortical spreading depolarization (CSD) considered as the underlying electrophysiological event. CSD is a slowly propagating wave of neuronal and glial depolarization. Sleep disorders are well known risk factors for migraine chronification, and changes in wake-sleep pattern such as sleep deprivation are common migraine triggers. The underlying mechanisms are unknown. As a step towards developing an animal model to study this, we test whether sleep deprivation, a modifiable migraine trigger, enhances CSD susceptibility in rodent models. METHODS: Acute sleep deprivation was achieved using the "gentle handling method", chosen to minimize stress and avoid confounding bias. Sleep deprivation was started with onset of light (diurnal lighting conditions), and assessment of CSD was performed at the end of a 6 h or 12 h sleep deprivation period. The effect of chronic sleep deprivation on CSD was assessed 6 weeks or 12 weeks after lesioning of the hypothalamic ventrolateral preoptic nucleus. All experiments were done in a blinded fashion with respect to sleep status. During 60 min of continuous topical KCl application, we assessed the total number of CSDs, the direct current shift amplitude and duration of the first CSD, the average and cumulative duration of all CSDs, propagation speed, and electrical CSD threshold. RESULTS: Acute sleep deprivation of 6 h (n = 17) or 12 h (n = 11) duration significantly increased CSD frequency compared to controls (17 ± 4 and 18 ± 2, respectively, vs. 14 ± 2 CSDs/hour in controls; p = 0.003 for both), whereas other electrophysiological properties of CSD were unchanged. Acute total sleep deprivation over 12 h but not over 6 h reduced the electrical threshold of CSD compared to controls (p = 0.037 and p = 0.095, respectively). Chronic partial sleep deprivation in contrast did not affect CSD susceptibility in rats. CONCLUSIONS: Acute but not chronic sleep deprivation enhances CSD susceptibility in rodents, possibly underlying its negative impact as a migraine trigger and exacerbating factor. Our findings underscore the importance of CSD as a therapeutic target in migraine and suggest that headache management should identify and treat associated sleep disorders.


Asunto(s)
Migraña sin Aura/fisiopatología , Privación de Sueño/fisiopatología , Animales , Depresión de Propagación Cortical/fisiología , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley
3.
Brain ; 140(6): 1643-1656, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28430869

RESUMEN

Spreading depolarization is a wave of neuronal and glial depolarization. Within minutes after spreading depolarization, the neuronal hemichannel pannexin 1 (PANX1) opens and forms a pore complex with the ligand-gated cation channel P2X7, allowing the release of excitatory neurotransmitters to sustain spreading depolarization and activate neuroinflammation. Here, we explore the hypothesis that the P2X7-PANX1 pore complex is a critical determinant of spreading depolarization susceptibility with important consequences for neuroinflammation and trigeminovascular activation. We found that genetic loss of function or ablation of the P2x7 gene inhibits spreading depolarization. Moreover, pharmacological suppression of the P2X7-PANX1 pore complex inhibits spreading depolarization in mice carrying the human familial hemiplegic migraine type 1 R192Q missense mutation as well as in wild-type mice and rats. Pore inhibitors elevate the electrical threshold for spreading depolarization, and reduce spreading depolarization frequency and amplitude. Pore inhibitors also suppress downstream consequences of spreading depolarization such as upregulation of interleukin-1 beta, inducible nitric oxide synthase and cyclooxygenase-2 in the cortex after spreading depolarization. In addition, they inhibit surrogates for trigeminovascular activation, including expression of calcitonin gene-related peptide in the trigeminal ganglion and c-Fos in the trigeminal nucleus caudalis. Our results are consistent with the hypothesis that the P2X7-PANX1 pore complex is a critical determinant of spreading depolarization susceptibility and its downstream consequences, of potential relevance to its signature disorders such as migraine.


Asunto(s)
Ataxia Cerebelosa/tratamiento farmacológico , Corteza Cerebral/efectos de los fármacos , Conexinas/efectos de los fármacos , Depresión de Propagación Cortical/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inflamación/tratamiento farmacológico , Trastornos Migrañosos/tratamiento farmacológico , Proteínas del Tejido Nervioso/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/efectos de los fármacos , Animales , Conexinas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley
4.
Glia ; 64(1): 5-20, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26301517

RESUMEN

Spreading depolarizations (SDs) are coordinated waves of synchronous depolarization, involving large numbers of neurons and astrocytes as they spread slowly through brain tissue. The recent identification of SDs as likely contributors to pathophysiology in human subjects has led to a significant increase in interest in SD mechanisms, and possible approaches to limit the numbers of SDs or their deleterious consequences in injured brain. Astrocytes regulate many events associated with SD. SD initiation and propagation is dependent on extracellular accumulation of K(+) and glutamate, both of which involve astrocytic clearance. SDs are extremely metabolically demanding events, and signaling through astrocyte networks is likely central to the dramatic increase in regional blood flow that accompanies SD in otherwise healthy tissues. Astrocytes may provide metabolic support to neurons following SD, and may provide a source of adenosine that inhibits neuronal activity following SD. It is also possible that astrocytes contribute to the pathophysiology of SD, as a consequence of excessive glutamate release, facilitation of NMDA receptor activation, brain edema due to astrocyte swelling, or disrupted coupling to appropriate vascular responses after SD. Direct or indirect evidence has accumulated implicating astrocytes in many of these responses, but much remains unknown about their specific contributions, especially in the context of injury. Conversion of astrocytes to a reactive phenotype is a prominent feature of injured brain, and recent work suggests that the different functional properties of reactive astrocytes could be targeted to limit SDs in pathophysiological conditions.


Asunto(s)
Astrocitos/fisiología , Depresión de Propagación Cortical/fisiología , Animales , Lesiones Encefálicas/fisiopatología , Lesiones Encefálicas/terapia , Humanos
5.
Glia ; 63(1): 91-103, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25092804

RESUMEN

Waves of spreading depolarization (SD) have been implicated in the progressive expansion of acute brain injuries. SD can persist over several days, coincident with the time course of astrocyte activation, but little is known about how astrocyte activation may influence SD susceptibility. We examined whether activation of astrocytes modified SD threshold in hippocampal slices. Injection of a lentiviral vector encoding Ciliary neurotrophic factor (CNTF) into the hippocampus in vivo, led to sustained astrocyte activation, verified by up-regulation of glial fibrillary acidic protein (GFAP) at the mRNA and protein levels, as compared to controls injected with vector encoding LacZ. In acute brain slices from LacZ controls, localized 1M KCl microinjections invariably generated SD in CA1 hippocampus, but SD was never induced with this stimulus in CNTF tissues. No significant change in intrinsic excitability was observed in CA1 neurons, but excitatory synaptic transmission was significantly reduced in CNTF samples. mRNA levels of the predominantly astrocytic Na(+) /K(+) -ATPase pump α2 subunit were higher in CNTF samples, and the kinetics of extracellular K(+) transients during matched synaptic activation were consistent with increased K(+) uptake in CNTF tissues. Supporting a role for the Na(+) /K(+) -ATPase pump in increased SD threshold, ouabain, an inhibitor of the pump, was able to generate SD in CNTF tissues. These data support the hypothesis that activated astrocytes can limit SD onset via increased K(+) clearance and suggest that therapeutic strategies targeting these glial cells could improve the outcome following acute brain injuries associated with SD.


Asunto(s)
Astrocitos/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Neuronas/metabolismo , Potasio/metabolismo , Animales , Lesiones Encefálicas/metabolismo , Polaridad Celular/fisiología , Factor Neurotrófico Ciliar/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Regulación hacia Arriba/efectos de los fármacos
6.
J Neurochem ; 125(5): 673-84, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23495967

RESUMEN

Spreading depolarization (SD) is a feed-forward wave that propagates slowly throughout brain tissue and recovery from SD involves substantial metabolic demand. Presynaptic Zn(2+) release and intracellular accumulation occurs with SD, and elevated intracellular Zn(2+) ([Zn(2+) ]i ) can impair cellular metabolism through multiple pathways. We tested here whether increased [Zn(2+) ]i could exacerbate the metabolic challenge of SD, induced by KCl, and delay recovery in acute murine hippocampal slices. [Zn(2+) ]i loading prior to SD, by transient ZnCl2 application with the Zn(2+) ionophore pyrithione (Zn/Pyr), delayed recovery of field excitatory post-synaptic potentials (fEPSPs) in a concentration-dependent manner, prolonged DC shifts, and significantly increased extracellular adenosine accumulation. These effects could be due to metabolic inhibition, occurring downstream of pyruvate utilization. Prolonged [Zn(2+) ]i accumulation prior to SD was required for effects on fEPSP recovery and consistent with this, endogenous synaptic Zn(2+) release during SD propagation did not delay recovery from SD. The effects of exogenous [Zn(2+) ]i loading were also lost in slices preconditioned with repetitive SDs, implying a rapid adaptation. Together, these results suggest that [Zn(2+) ]i loading prior to SD can provide significant additional challenge to brain tissue, and could contribute to deleterious effects of [Zn(2+) ]i accumulation in a range of brain injury models.


Asunto(s)
Cloruros/metabolismo , Depresión de Propagación Cortical/fisiología , Líquido Intracelular/metabolismo , Sinapsis/metabolismo , Regulación hacia Arriba/fisiología , Compuestos de Zinc/metabolismo , Animales , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
J Clin Invest ; 132(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35202003

RESUMEN

Cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL) is the most common monogenic form of small vessel disease characterized by migraine with aura, leukoaraiosis, strokes, and dementia. CADASIL mutations cause cerebrovascular dysfunction in both animal models and humans. Here, we showed that 2 different human CADASIL mutations (Notch3 R90C or R169C) worsen ischemic stroke outcomes in transgenic mice; this was explained by the higher blood flow threshold to maintain tissue viability compared with that in wild type (WT) mice. Both mutants developed larger infarcts and worse neurological deficits compared with WT mice, regardless of age or sex after filament middle cerebral artery occlusion. However, full-field laser speckle flowmetry during distal middle cerebral artery occlusion showed comparable perfusion deficits in mutants and their respective WT controls. Circle of Willis anatomy and pial collateralization also did not differ among the genotypes. In contrast, mutants had a higher cerebral blood flow threshold, below which infarction ensued, suggesting increased sensitivity of brain tissue to ischemia. Electrophysiological recordings revealed a 1.5- to 2-fold higher frequency of peri-infarct spreading depolarizations in CADASIL mutants. Higher extracellular K+ elevations during spreading depolarizations in the mutants implicated a defect in extracellular K+ clearance. Altogether, these data reveal a mechanism of enhanced vulnerability to ischemic injury linked to abnormal extracellular ion homeostasis and susceptibility to ischemic depolarizations in CADASIL.


Asunto(s)
CADASIL , Animales , Encéfalo , CADASIL/genética , Homeostasis , Infarto de la Arteria Cerebral Media , Ratones , Mutación , Potasio , Receptores Notch/genética
8.
Alcohol Clin Exp Res ; 34(10): 1793-802, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20626729

RESUMEN

BACKGROUND: Drinking during pregnancy has been associated with learning disabilities in affected offspring. At present, there are no clinically effective pharmacotherapeutic interventions for these learning deficits. Here, we examined the effects of ABT-239, a histamine H3 receptor antagonist, on fetal ethanol-induced fear conditioning and spatial memory deficits. METHODS AND RESULTS: Long-Evans rat dams stably consumed a mean of 2.82 g ethanol/kg during a 4-hour period each day during pregnancy. This voluntary drinking pattern produced a mean peak serum ethanol level of 84 mg/dl. Maternal weight gain, litter size and birth weights were not different between the ethanol-consuming and control groups. Female adult offspring from the control and fetal alcohol-exposed (FAE) groups received saline or 1 mg ABT-239/kg 30 minutes prior to fear conditioning training. Three days later, freezing time to the context was significantly reduced in saline-treated FAE rats compared to control. Freezing time in ABT-239-treated FAE rats was not different than that in controls. In the spatial navigation study, adult male offspring received a single injection of saline or ABT-239 30 minutes prior to 12 training trials on a fixed platform version of the Morris Water Task. All rats reached the same performance asymptote on Trials 9 to 12 on Day 1. However, 4 days later, first-trial retention of platform location was significantly worse in the saline-treated FAE rats compared control offspring. Retention by ABT-239-treated FAE rats was similar to that by controls. ABT-239's effect on spatial memory retention in FAE rats was dose dependent. CONCLUSIONS: These results suggest that ABT-239 administered prior to training can improve retention of acquired information by FAE offspring on more challenging versions of hippocampal-sensitive learning tasks. Further, the differential effects of ABT-239 in FAE offspring compared to controls raises questions about the impact of fetal ethanol exposure on histaminergic neurotransmission in affected offspring.


Asunto(s)
Benzofuranos/uso terapéutico , Etanol/efectos adversos , Discapacidades para el Aprendizaje/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Nootrópicos/uso terapéutico , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Pirrolidinas/uso terapéutico , Animales , Condicionamiento Clásico/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Antagonistas de los Receptores Histamínicos/farmacología , Discapacidades para el Aprendizaje/inducido químicamente , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/psicología , Ratas , Ratas Long-Evans , Receptores Histamínicos H3/efectos de los fármacos
9.
Neuroscience ; 415: 1-9, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31299346

RESUMEN

Cortical spreading depolarization (CSD) is the electrophysiological substrate of migraine aura, and a putative trigger of trigeminovascular activation and migraine headache. Many migraineurs report stress or relief after a stress triggers an attack. We tested whether various stress conditions might modulate CSD susceptibility and whether this is dependent on genetic factors. Male and female wild type and familial hemiplegic migraine type1 (FHM1) knock-in mice heterozygous for the S218L missense mutation were subjected to acute or chronic stress, or chronic stress followed by relief (36 h). Acute stress was induced by restraint and exposure to bright light and white noise (3 h). Chronic stress was induced for 28 days by two cycles of repeated exposure of mice to a rat (7 days), physical restraint (3 days), and forced swimming (3 days). Electrical CSD threshold and KCl-induced (300 mM) CSD frequency were determined in occipital cortex in vivo at the end of each protocol. Relief after chronic stress reduced the electrical CSD threshold and increased the frequency of KCl-induced CSDs in FHM1 mutants only. Acute or chronic stress without relief did not affect CSD susceptibility in either strain. Stress status did not affect CSD propagation speed, duration or amplitude. In summary, relief after chronic stress, but not acute or chronic stress alone, augments CSD in genetically susceptible mice. Therefore, enhanced CSD susceptibility may explain why, in certain patients, migraine attacks typically occur during a period of stress relief such as weekends or holidays.


Asunto(s)
Migraña con Aura/fisiopatología , Estrés Psicológico/fisiopatología , Animales , Depresión de Propagación Cortical , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Neuron ; 85(5): 1117-31, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25741731

RESUMEN

Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes stroke patients to PIDs as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome.


Asunto(s)
Infarto Cerebral/metabolismo , Depresión de Propagación Cortical/fisiología , Infarto de la Arteria Cerebral Media/metabolismo , Corteza Somatosensorial/metabolismo , Adulto , Anciano , Animales , Infarto Cerebral/patología , Femenino , Humanos , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Corteza Somatosensorial/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA