Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 22(3): 669-686, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36417143

RESUMEN

The mycelial biomass of basidiomycetes is a promising source of compounds and represents an alternative for industrial and biotechnological applications. Fungi use light as information and hold photoresponse mechanisms, in which sensors respond to light wavelengths and regulate various biological processes. Therefore, this study aimed to investigate the effects of blue, green, and red lights on the growth, chemical composition, and antioxidant and antimicrobial activity of Lentinus crinitus mycelial biomass. The chemical composition of the mycelial biomass was determined by chromatographic methods, antioxidant activity was analyzed by in vitro assays, and antimicrobial activity was investigated by the microdilution assay. The highest mycelial biomass yield was observed under blue-light cultivation. Many primordia arose under blue or green light, whereas the stroma was formed under red light. The presence of light altered the primary fungal metabolism, increasing the carbohydrate, tocopherol, fatty acid, and soluble sugar contents, mostly mannitol, and reducing the protein and organic acid concentrations. Cultivation under red light increased the phenol concentration. In contrast, cultivation under blue and green lights decreased phenol concentration. Benzoic and gallic acids were the main phenolic acids in the hydroalcoholic extracts, and the latter acids increased in all cultures under light, especially red light. Mycelial biomass cultivated under red light showed the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The ferric reducing antioxidant power (FRAP) method showed that all light wavelengths increased the antioxidant activity of mycelial biomass, with the highest value under red light. Moreover, the ß-carotene/linoleic acid co-oxidation (BCLA) assay demonstrated that the antioxidant activity was affected by light cultivation. Mycelial biomass grown under all conditions exhibited antibacterial and antifungal activities. Thus, mycelial biomass cultivation of L. crinitus under light conditions may be a promising strategy for controlling the mycelial chemical composition and biomass yield.


Asunto(s)
Antiinfecciosos , Basidiomycota , Lentinula , Antioxidantes/farmacología , Antioxidantes/metabolismo , Biomasa , Lentinula/metabolismo , Basidiomycota/metabolismo , Fenoles/metabolismo
2.
Curr Issues Mol Biol ; 43(2): 767-781, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34449532

RESUMEN

KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein-protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Células Cultivadas , Humanos , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/metabolismo , Mapas de Interacción de Proteínas , Empalme del ARN
3.
J Appl Biomed ; 18(4): 106-114, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-34907763

RESUMEN

Carvacrol presents action in Salmonella Typhimurium biofilms, however the antibiofilm mechanism of this compound has not been fully established yet. In the present study, the aim was to evaluate protein profile changes in S. Typhimurium biofilm treated with carvacrol. Proteomic analysis of treated versus untreated biofilm showed several changes in proteins involved with S. Typhimurium biofilm and antioxidant activity. The proteins DsbA (thiol: disulfide interchange protein DsbA), LuxS (S-ribosylhomocysteine lyase), DksA (RNA polymerase binding transcription factor DksA), and SODs (superoxide dismutases) A, B and C had their synthesis decreased after treatment with carvacrol. These proteins play a key role in S. Typhimurium biofilm formation, demonstrating the dynamic antibiofilm action of carvacrol. The differentially expressed proteins identified provide possible action targets for future studies in order to gain more insight into the mechanism of action of carvacrol on S. Typhimurium biofilm.


Asunto(s)
Proteómica , Salmonella typhimurium , Biopelículas , Cimenos/farmacología , Salmonella typhimurium/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-30348661

RESUMEN

Paracoccidioidomycosis (PCM), caused by Paracoccidioides, is a systemic mycosis with granulomatous character and a restricted therapeutic arsenal. The aim of this work was to search for new alternatives to treat largely neglected tropical mycosis, such as PCM. In this context, the enzymes of the shikimate pathway constitute excellent drug targets for conferring selective toxicity because this pathway is absent in humans but essential for the fungus. In this work, we have used a homology model of the chorismate synthase (EC 4.2.3.5) from Paracoccidioides brasiliensis (PbCS) and performed a combination of virtual screening and molecular dynamics testing to identify new potential inhibitors. The best hit, CP1, successfully adhered to pharmacological criteria (adsorption, distribution, metabolism, excretion, and toxicity) and was therefore used in in vitro experiments. Here we demonstrate that CP1 binds with a dissociation constant of 64 ± 1 µM to recombinant chorismate synthase from P. brasiliensis and inhibits enzymatic activity, with a 50% inhibitory concentration (IC50) of 47 ± 5 µM. As expected, CP1 showed no toxicity in three cell lines. On the other hand, CP1 reduced the fungal burden in lungs from treated mice, similar to itraconazole. In addition, histopathological analysis showed that animals treated with CP1 displayed less lung tissue infiltration, fewer yeast cells, and large areas with preserved architecture. Therefore, CP1 was able to control PCM in mice with a lower inflammatory response and is thus a promising candidate and lead structure for the development of drugs useful in PCM treatment.


Asunto(s)
Antifúngicos/farmacología , Descubrimiento de Drogas/métodos , Paracoccidioides/efectos de los fármacos , Paracoccidioidomicosis/tratamiento farmacológico , Liasas de Fósforo-Oxígeno/antagonistas & inhibidores , Quinolinas/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Itraconazol/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Simulación de Dinámica Molecular , Paracoccidioides/clasificación , Paracoccidioides/aislamiento & purificación , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/microbiología , Análisis de Secuencia de Proteína
5.
Artículo en Inglés | MEDLINE | ID: mdl-31481438

RESUMEN

The activity of rifampin (RIF) and piperine was evaluated at the relative transcript levels of 12 efflux pumps (EPs), and an additional mechanism was proposed to be behind the synergic interactions of piperine plus RIF in Mycobacterium tuberculosis AutoDock v4.2.3 and Molegro v6 programs were used to evaluate PIP binding in M. tuberculosis RNA polymerase (RNAP). A hypothesis has been raised that piperine interferes in M. tuberculosis growth through RNAP inhibition, differently from what was previously endorsed for EP inhibition only.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Benzodioxoles/farmacología , ARN Polimerasas Dirigidas por ADN/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Rifampin/farmacología , Alcaloides/administración & dosificación , Alcaloides/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Benzodioxoles/administración & dosificación , Benzodioxoles/metabolismo , Sitios de Unión , Sinergismo Farmacológico , Quimioterapia Combinada , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Piperidinas/administración & dosificación , Piperidinas/metabolismo , Alcamidas Poliinsaturadas/administración & dosificación , Alcamidas Poliinsaturadas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rifampin/administración & dosificación , Rifampin/metabolismo
6.
Eur Biophys J ; 48(7): 645-657, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31309277

RESUMEN

The DNA/RNA-binding KIN protein was discovered in 1989, and since then, it has been found to participate in several processes, e.g., as a transcription factor in bacteria, yeasts, and plants, in immunoglobulin isotype switching, and in the repair and resolution of double-strand breaks caused by ionizing radiation. However, the complete three-dimensional structure and biophysical properties of KIN remain important information for clarifying its function and to help elucidate mechanisms associated with it not yet completely understood. The present study provides data on phylogenetic analyses of the different domains, as well as a biophysical characterization of the human KIN protein (HSAKIN) using bioinformatics techniques, circular dichroism spectroscopy, and differential scanning calorimetry to estimate the composition of secondary structure elements; further studies were performed to determine the biophysical parameters ΔHm and Tm. The phylogenetic analysis indicated that the zinc-finger and winged helix domains are highly conserved in KIN, with mean identity of 90.37% and 65.36%, respectively. The KOW motif was conserved only among the higher eukaryotes, indicating that this motif emerged later on the evolutionary timescale. HSAKIN has more than 50% of its secondary structure composed by random coil and ß-turns. The highest values of ΔHm and Tm were found at pH 7.4 suggesting a stable structure at physiological conditions. The characteristics found for HSAKIN are primarily due to its relatively low composition of α-helices and ß-strands, making up less than half of the protein structure.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Filogenia , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Fenómenos Biofísicos , Disulfuros/química , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Agregado de Proteínas , Estructura Secundaria de Proteína , Temperatura
7.
RNA Biol ; 16(3): 330-339, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30666901

RESUMEN

Non-coding Y RNAs and stem-bulge RNAs are homologous small RNAs in vertebrates and nematodes, respectively. They share a conserved function in the replication of chromosomal DNA in these two groups of organisms. However, functional homologues have not been found in insects, despite their common early evolutionary history. Here, we describe the identification and functional characterization of two sbRNAs in Drosophila melanogaster, termed Dm1 and Dm2. The genes coding for these two RNAs were identified by a computational search in the genome of D. melanogaster for conserved sequence motifs present in nematode sbRNAs. The predicted secondary structures of Dm1 and Dm2 partially resemble nematode sbRNAs and show stability in molecular dynamics simulations. Both RNAs are phylogenetically closer related to nematode sbRNAs than to vertebrate Y RNAs. Dm1, but not Dm2 sbRNA is abundantly expressed in D. melanogaster S2 cells and adult flies. Only Dm1, but not Dm2 sbRNA can functionally replace Y RNAs in a human cell-free DNA replication initiation system. Therefore, Dm1 is the first functional sbRNA described in insects, allowing future investigations into the physiological roles of sbRNAs in the genetically tractable model organism D. melanogaster.


Asunto(s)
Drosophila melanogaster/genética , ARN no Traducido/genética , Animales , Drosophila melanogaster/clasificación , Perfilación de la Expresión Génica , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN no Traducido/química , Transcriptoma
8.
Parasitol Res ; 117(5): 1465-1471, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29550996

RESUMEN

Toxoplasmosis is a zoonosis of worldwide distribution. Currently, two drugs, pyrimethamine and sulfadiazine, are used as a reference in the treatment of toxoplasmosis, but the resistance of Toxoplasma gondii appears as a relevant public health problem. In order to identify new drugs to toxoplasmosis treatment, we performed a molecular docking of raltitrexed to T. gondii thymidylate synthase-dihydrofolate reductase (TS-DHFR) and also evaluated its efficacy in infected mice. Initially, raltitrexed was docked on the crystallographic structures of TS-DHFR from T. gondii and Mus musculus. Then, 48 h after infection with the T. gondii RH strain, different groups of mice received an oral dose of raltitrexed (0.15, 0.75, and 1.5 mg kg-1). Two days after treatments, raltitrexed was able to prevent mortality and reduce the number of tachyzoites in the peritoneal fluid and liver imprints from infected mice. The results showed that raltitrexed has important protective activities against the T. gondii RH strain. Molecular docking still suggests that the effects against the parasite may be dependent on the inhibition of T. gondii thymidylate synthase. This study opens new perspectives for the use of raltitrexed in patients infected with T. gondii, especially when conventional treatments do not exhibit the expected efficacy.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Complejos Multienzimáticos/antagonistas & inhibidores , Quinazolinas/metabolismo , Quinazolinas/farmacología , Tiofenos/metabolismo , Tiofenos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Toxoplasmosis Animal/tratamiento farmacológico , Animales , Humanos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Complejos Multienzimáticos/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidilato Sintasa/metabolismo , Toxoplasma/enzimología , Toxoplasmosis Animal/parasitología
9.
BMC Mol Biol ; 17: 1, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26733090

RESUMEN

BACKGROUND: The genes coding for Y RNAs are evolutionarily conserved in vertebrates. These non-coding RNAs are essential for the initiation of chromosomal DNA replication in vertebrate cells. However thus far, no information is available about Y RNAs in Chinese hamster cells, which have already been used to detect replication origins and alternative DNA structures around these sites. Here, we report the gene sequences and predicted structural characteristics of the Chinese hamster Y RNAs, and analyze their ability to support the initiation of chromosomal DNA replication in vitro. RESULTS: We identified DNA sequences in the Chinese hamster genome of four Y RNAs (chY1, chY3, chY4 and chY5) with upstream promoter sequences, which are homologous to the four main types of vertebrate Y RNAs. The chY1, chY3 and chY5 genes were highly conserved with their vertebrate counterparts, whilst the chY4 gene showed a relatively high degree of diversification from the other vertebrate Y4 genes. Molecular dynamics simulations suggest that chY4 RNA is structurally stable despite its evolutionarily divergent predicted stem structure. Of the four Y RNA genes present in the hamster genome, we found that only the chY1 and chY3 RNA were strongly expressed in the Chinese hamster GMA32 cell line, while expression of the chY4 and chY5 RNA genes was five orders of magnitude lower, suggesting that they may in fact not be expressed. We synthesized all four chY RNAs and showed that any of these four could support the initiation of DNA replication in an established human cell-free system. CONCLUSIONS: These data therefore establish that non-coding chY RNAs are stable structures and can substitute for human Y RNAs in a reconstituted cell-free DNA replication initiation system. The pattern of Y RNA expression and functionality is consistent with Y RNAs of other rodents, including mouse and rat.


Asunto(s)
Replicación del ADN , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN no Traducido/química , ARN no Traducido/genética , Animales , Línea Celular , Simulación por Computador , Cricetulus , Regulación de la Expresión Génica , Genoma , Enlace de Hidrógeno , Modelos Moleculares , Relación Estructura-Actividad
10.
Chem Pharm Bull (Tokyo) ; 62(12): 1231-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25450631

RESUMEN

The purpose of this study was to investigate the effects of the chronic administration of a racemic mixture of 8-prenylnaringenin (8-PN) on rats submitted to the elevated T-maze (ETM) model of generalized anxiety and panic disorders. The selective serotonin (SERT) reuptake inhibitor fluoxetine was used as a positive control. Rat locomotion was assessed in a circular arena following each drug treatment. The administration of racemic 8-PN for 21 d in rats increased one-way escape latencies from the ETM open arm, indicating a panicolytic effect. To evaluate the interactions of 8-PN with monoamine transporters, a docking study was performed for both the R and S configurations of 8-PN towards SERT, norepinephrine (NET) and dopamine transporters (DAT). The application of the docking protocol showed that (R)-8-PN provides greater affinity to all transporters than does the S enantiomer. This result suggests that enantiomer (R)-8-PN is the active form in the in vivo test of the racemic mixture.


Asunto(s)
Ansiolíticos/metabolismo , Ansiolíticos/farmacología , Flavanonas/farmacología , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Fluoxetina/farmacología , Masculino , Modelos Moleculares , Actividad Motora/efectos de los fármacos , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Trastorno de Pánico/tratamiento farmacológico , Ratas , Ratas Wistar , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Estereoisomerismo , Relación Estructura-Actividad
11.
Fitoterapia ; 177: 106101, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945495

RESUMEN

Helicobacter pylori is a bacterium that is present in the stomach of about 50% of the global population and is associated with several gastric disorders, including cancer. Natural products with antimicrobial activity have been tested against H. pylori, among them Trichilia catigua (catuaba), which is widely distributed in Brazil. This study aimed to evaluate extracts of T. catigua bark against H. pylori via determination of the minimum inhibitory and bactericidal concentrations (MIC and MBC); evaluation of virulence factors by real-time PCR, synergism with standard antimicrobials and morphology by scanning electron microscopy and simulations of the mechanism of action by molecular docking. The ethyl acetate fraction provided the best results, with an MIC50 of 250 µg/mL and a 42.34% reduction in urease activity, along with reduced expression of the CagA and VacA genes, which encode for the main virulence factors. This fraction presented synergistic activity with clarithromycin, reducing the MIC of the drug by four-fold. Docking simulations suggested that the extracts inhibit fatty acid synthesis by the FAS-II system, causing damage to the cell membrane. Therefore, T. catigua extracts have potential as an adjuvant to treatment and are promising for the development of new anti-H. pylori drugs.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Helicobacter pylori , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Corteza de la Planta , Extractos Vegetales , Helicobacter pylori/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Corteza de la Planta/química , Brasil , Factores de Virulencia , Meliaceae/química , Claritromicina/farmacología , Ureasa , Sinergismo Farmacológico , Antígenos Bacterianos
12.
Fitoterapia ; 177: 106120, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992475

RESUMEN

Periodontitis is clinically characterized by destruction of the tooth support system and tooth loss. Porphyromonas gingivalis (Pg) plays a dominant role in periodontitis. Fractions and isolated compounds from an acetone-water extract of the roots of Limonium brasiliense (Lb) were tested in vitro for their anti-adhesive capacity against Pg on human KB buccal cells, influence on gingipains, the main virulence factors of Pg, and biofilm formation. Fractions EAF and FLB7 (50 µg/mL) reduced the bacterial adhesion of Pg to KB cells significantly (63 resp. 70%). The proanthocyanidin samarangenin A inhibited the adhesion (72%, 30 µM), samarangenin B (71%, 20 µM), and the flavan-3-ol epigallocatechin-3-O-gallate (79%, 30 µM). Fraction AQF, representing hydrophilic compounds, reduced the proteolytic activity of Arginin-specific gingipain (IC50 12.78 µg/mL). Fractions EAF and FLB7, characterized by lipohilic constituents, inhibited Arg-gingipain (IC50 3 µg/mL). On Lysine-specific gingipain, AQF has an IC50 15.89, EAF 14.15, and FLB7 6 µg/mL. The reduced bacterial adhesion is due to a strong interaction of proanthocyanidins with gingipains. AQF, EAF, and FLB7 significantly inhibited biofilm formation: IC50 11.34 (AQF), 11.66 (EAF), and 12.09 µg/mL (FLB7). In silico analysis indicated, that the polyphenols act against specific targets of Pg, not affecting mammalian cells. Therefore, Lb might be effective for prevention of periodontal disease by influencing virulence factors of Pg.


Asunto(s)
Adhesinas Bacterianas , Adhesión Bacteriana , Biopelículas , Cisteína Endopeptidasas , Cisteína-Endopeptidasas Gingipaínas , Extractos Vegetales , Plumbaginaceae , Porphyromonas gingivalis , Factores de Virulencia , Biopelículas/efectos de los fármacos , Porphyromonas gingivalis/efectos de los fármacos , Humanos , Adhesinas Bacterianas/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plumbaginaceae/química , Raíces de Plantas/química , Proantocianidinas/farmacología , Proantocianidinas/aislamiento & purificación , Células KB , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación
13.
J Biomol Struct Dyn ; : 1-8, 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424215

RESUMEN

The SARS-CoV-2 pandemic originated the urgency in developing therapeutic resources for the treatment of COVID-19. Despite the current availability of vaccines and some antivirals, the occurence of severe cases of the disease and the risk of the emergence of new virus variants still motivate research in this field. In this context, this study aimed at the computational prospection of likely inhibitors of the main protease (Mpro) of SARS-CoV-2 since inhibiting this enzyme leads to disruption of the viral replication process. The virtual screening of the antiviral libraries Asinex, ChemDiv, and Enamine targeting SARS-CoV-2 Mpro was performed, indicating the D449-0032 compound as a promising inhibitor. Molecular dynamics simulations showed the stability of the protein-ligand complex and in silico predictions of toxicity and pharmacokinetic parameters indicated the probable drug-like behavior of the compound. In vitro and in vivo studies are essential to confirm the Mpro inhibition by the D449-0032.Communicated by Ramaswamy H. Sarma.

14.
Biochimie ; 211: 87-95, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36934778

RESUMEN

The enzyme Homoserine dehydrogenase from Paracoccidioides brasiliensis (PbHSD), an interesting enzyme in the search for new antifungal drugs against paracoccidioidomycosis, was expressed by E. coli. Thirty milligrams of PbHSD with 94% of purity were obtained per liter of culture medium. The analysis by CD spectroscopy indicates a composition of 45.5 ± 7.3% of α-helices and 10.5 ± 7.0% ß-strands. Gel filtration chromatography indicates a homodimer as biological unity. Fluorescence emission spectroscopy has shown stability of PbHSD in the presence of urea until Cm of 4.13 ± 0.21 M, and a broad pH range in which there is no conformational change. The protein analysis by differential scanning calorimetry indicates high stability at room temperature, but low stability at high temperatures, suffering irreversible denaturation, with Tm = 58.65 ± 0.87 °C. Kinetic studies of PbHSD by molecular absorption spectroscopy in UV/Vis have shown an optimum pH between 9.35 and 9.50, with Michaelian behavior, presenting KM of 224 ± 15 µM and specific activity at optimum pH of 2.10 ± 0.07 µmol/min/mg for homoserine. Therefore, protein expression and purification were efficient, and the structural characterization has shown that PbHSD presents native conformation with enzymatic activity in kinetic assays.


Asunto(s)
Paracoccidioides , Paracoccidioides/genética , Paracoccidioides/metabolismo , Homoserina Deshidrogenasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Espectrometría de Fluorescencia
15.
J Biomol Struct Dyn ; 41(7): 2971-2980, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35196960

RESUMEN

The development of new drugs against Mycobacterium tuberculosis is an essential strategy for fighting drug resistance. Although 3-dehydroquinate dehydratase (MtDHQ) is known to be a highly relevant target for M. tuberculosis, current research shows new putative inhibitors of MtDHQ selected by a large-scale ensemble-docking strategy combining ligand- and target-based chemoinformatic methods to deep learning. Initial chemical library was reduced from 216 million to approximately 460 thousand after pharmacophore, toxicity and molecular weight filters. Final library was subjected to an ensemble-docking protocol in GOLD which selected the top 300 molecules (GHITS). GHITS displayed different structures and characteristics when compared to known inhibitors (KINH). GHITS were further screened by post-docking analysis in AMMOS2 and deep learning virtual screening in DeepPurpose. DeepPurpose predicted that a number of GHITS had comparable or better affinity for the target than KINH. The best molecule was selected by consensus ranking using GOLD, AMMOS2 and DeepPurpose scores. Molecular dynamics revealed that the top hit displayed consistent and stable binding to MtDHQ, making strong interactions with active-site loop residues. Results forward new putative inhibitors of MtDHQ and reinforce the potential application of artificial intelligence methods for drug design. This work represents the first step in the validation of these molecules as inhibitors of MtDHQ.


Asunto(s)
Aprendizaje Profundo , Mycobacterium tuberculosis , Ligandos , Inteligencia Artificial
16.
J Biomol Struct Dyn ; 41(18): 8671-8681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36255291

RESUMEN

Piperine (PPN) is a known inhibitor of efflux pumps in Mycobacterium tuberculosis and in vitro synergism with rifampicin (RIF) has been proven. The current study evaluates the activity of PPN and synergism with RIF in rapidly and slowly growing nontuberculous mycobacteria (NTM). Also, to propose a possible mechanism of interaction of PPN with M. leprae (Mlp) RNA polymerase (RNAp). Minimal inhibitory concentration and drug combination assay was determined by resazurin microtiter assay and resazurin drug combination assay, respectively. In silico evaluation of PPN binding was performed by molecular docking and molecular dynamics (MD). PPN showed higher antimicrobial activity against rapidly growing NTM (32-128 mg/L) rather than for slowly growing NTM (≥ 256 mg/L). Further, 77.8% of NTM tested exhibited FICI ≤ 0.5 when exposed to PPN and RIF combination, regardless of growth speed. Docking and MD simulations showed a possible PPN binding site at the interface between ß and ß' subunits of RNAp, in close proximity to the trigger-helix and bridge-helix elements. MD results indicated that PPN binding hindered the mobility of these elements, which are essential for RNA transcription. We hypothesize that PPN binding might affect mycobacterial RNAp activity, and, possibly, RIF activity and that this mechanism is partially responsible for synergic behaviors with RIF reported in vitro. Communicated by Ramaswamy H. Sarma.

17.
Food Funct ; 14(3): 1761-1772, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36723015

RESUMEN

A variety of the classic green tea plant, Camellia sinensis, was developed and is exclusive to Kenya. Due to high content of anthocyanin polyphenols in its leaves, the beverage obtained from this variety is purple in color and is the origin of the name purple tea. This work had two main purposes. The first one was to identify and quantify the major anthocyanin polyphenols in a hot water aqueous extract of the purple tea leaves. The second one was to test the hypothesis if this extract is capable of inhibiting triglyceride absorption considering that anthocyanin polyphenolics have been frequently associated to antilipidemic effects. Parallel experiments were always done with a similar green tea extract for comparison purposes. The antioxidant, anti-inflammatory, and cytotoxic activities of both tea varieties are similar. The purple tea extract, however, was strongly inhibitory toward the pancreatic lipase (minimal IC50 = 67.4 µg mL-1), whereas the green tea preparation was a weak inhibitor. Triglyceride digestion in mice was inhibited by the purple tea extract starting at 100 mg kg-1 dose and with a well-defined dose dependence. Green tea had no effect on triglyceride digestion at doses up to 500 mg kg-1. The latter effect is probably caused by several components in the purple tea extract including non-anthocyanin and anthocyanin polyphenols, the first ones acting solely via the inhibition of the pancreatic lipase and the latter by inhibiting both the lipase and the transport of free fatty acids from the intestinal lumen into the circulating blood. The results suggest that the regular consumption of Kenyan purple tea can be useful in the control of obesity.


Asunto(s)
Camellia sinensis , Lipasa , Ratones , Animales , Kenia , Polifenoles/farmacología , Polifenoles/análisis , Té/química , Camellia sinensis/química , Antocianinas/farmacología , Antocianinas/química , Antioxidantes/análisis , Triglicéridos , Digestión
18.
J Biomol Struct Dyn ; 41(15): 7297-7308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36069130

RESUMEN

Few extracts of plant species from the Brazilian flora have been validated from a pharmacological and clinical point of view, and it is important to determine whether their traditional use is proven by pharmacological effects. Cenostigma pluviosum var. peltophoroides is one of those plants, which belongs to the Fabaceae family that is widely used in traditional medicine and is very rich in tannins. Due to the lack of effective drugs to treat severe cases of Covid-19, the main protease of SARS-CoV-2 (Mpro) becomes an attractive target in the research for new antivirals since this enzyme is crucial for virus replication and does not have homologs in humans. This study aimed to prospect inhibitor candidates among the compounds from C. pluviosum extract, by virtual screening simulations using SARS-CoV-2 Mpro as target. Experimental validation was made by inhibitory proteolytic assays of recombinant Mpro and by antiviral activity with infected Vero cells. Docking simulations identify four compounds with potential inhibitory activity of Mpro present in the extract. The compound pentagalloylglucose showed the best result in proteolytic kinetics experiments, with suppression of recombinant Mpro activity by approximately 60%. However, in experiments with infected cells ethyl acetate fraction and sub-fractions, F2 and F4 of C. pluviosum extract performed better than pentagalloylglucose, reaching close to 100% of antiviral activity. The prominent activity of the extract fractions in infected cells may be a result of a synergistic effect from the different hydrolyzable tannins present, performing simultaneous action on Mpro and other targets from SARS-CoV-2 and host.Communicated by Ramaswamy H. Sarma.

19.
J Biomol Struct Dyn ; 41(21): 12204-12213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36651196

RESUMEN

The deaths caused by the covid-19 pandemic have recently decreased due to a worldwide effort in vaccination campaigns. However, even vaccinated people can develop a severe form of the disease that requires ICU admission. As a result, the search for antiviral drugs to treat these severe cases has become a necessity. In this context, natural products are an interesting alternative to synthetic medicines used in drug repositioning, as they have been consumed for a long time through traditional medicine. Many natural compounds found in plant extracts have already been shown to be effective in treating viral and bacterial diseases, making them possible hits to exploit against covid-19. The objective of this work was to evaluate the antiviral activity of different plant extracts available in the library of natural products of the Universidade Estadual de Maringá, by inhibiting the SARS-CoV-2 main protease (Mpro), and by preventing viral infection in a cellular model. As a result, the extract of Cytinus hypocistis, obtained by ultrasound, showed a Mpro inhibition capacity greater than 90%. In the infection model assays using Vero cells, an inhibition of 99.6% was observed, with a selectivity index of 42.7. The in silico molecular docking simulations using the extract compounds against Mpro, suggested Tellimagrandin II as the component of C. hypocistis extract most likely to inhibit the viral enzyme. These results demonstrate the potential of C. hypocistis extract as a promising source of natural compounds with antiviral activity against covid-19.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Chlorocebus aethiops , Animales , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2 , Células Vero , Extractos Vegetales/farmacología , Antivirales/farmacología , Inhibidores de Proteasas/farmacología , Simulación de Dinámica Molecular
20.
Plant Physiol Biochem ; 204: 108127, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890229

RESUMEN

Enzymes of the sulfur assimilation pathway of plants have been identified as potential targets for herbicide development, given their crucial role in synthesizing amino acids, coenzymes, and various sulfated compounds. In this pathway, O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) catalyzes the synthesis of L-cysteine through the incorporation of sulfate into O-acetylserine (OAS). This study used an in silico approach to select seven inhibitors for OAS-TL. The in silico experiments revealed that S-benzyl-L-cysteine (SBC) had a better docking score (-7.0 kcal mol-1) than the substrate OAS (-6.6 kcal mol-1), indicating its suitable interaction with the active site of the enzyme. In vitro experiments showed that SBC is a non-competitive inhibitor of OAS-TL from Arabidopsis thaliana expressed heterologously in Escherichia coli, with a Kic of 4.29 mM and a Kiu of 5.12 mM. When added to the nutrient solution, SBC inhibited the growth of maize and morning glory weed plants due to the reduction of L-cysteine synthesis. Remarkably, morning glory was more sensitive than maize. As proof of its mechanism of action, L-cysteine supplementation to the nutrient solution mitigated the inhibitory effect of SBC on the growth of morning glory. Taken together, our data suggest that reduced L-cysteine synthesis is the primary cause of growth inhibition in maize and morning glory plants exposed to SBC. Furthermore, our findings indicate that inhibiting OAS-TL could potentially be a novel approach for herbicidal action.


Asunto(s)
Arabidopsis , Herbicidas , Liasas , Arabidopsis/metabolismo , Cisteína , Cisteína Sintasa/metabolismo , Herbicidas/farmacología , Plantas/metabolismo , Compuestos de Sulfhidrilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA