Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
FASEB J ; 34(6): 8493-8509, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32369233

RESUMEN

Mutations in CHCHD10, a gene coding for a mitochondrial protein, are implicated in ALS-FTD spectrum disorders, which are pathologically characterized by transactive response DNA binding protein 43 kDa (TDP-43) accumulation. While both TDP-43 and CHCHD10 mutations drive mitochondrial pathogenesis, mechanisms underlying such phenotypes are unclear. Moreover, despite the disruption of the mitochondrial mitofilin protein complex at cristae junctions in patient fibroblasts bearing the CHCHD10S59L mutation, the role of CHCHD10 variants in mitofilin-associated protein complexes in brain has not been examined. Here, we utilized novel CHCHD10 transgenic mouse variants (WT, R15L, & S59L), TDP-43 transgenic mice, FTLD-TDP patient brains, and transfected cells to assess the interplay between CHCHD10 and TDP-43 on mitochondrial phenotypes. We show that CHCHD10 mutations disrupt mitochondrial OPA1-mitofilin complexes in brain, associated with impaired mitochondrial fusion and respiration. Likewise, CHCHD10 levels and OPA1-mitofilin complexes are significantly reduced in brains of FTLD-TDP patients and TDP-43 transgenic mice. In cultured cells, CHCHD10 knockdown results in OPA1-mitofilin complex disassembly, while TDP-43 overexpression also reduces CHCHD10, promotes OPA1-mitofilin complex disassembly via CHCHD10, and impairs mitochondrial fusion and respiration, phenotypes that are rescued by wild type (WT) CHCHD10. These results indicate that disruption of CHCHD10-regulated OPA1-mitofilin complex contributes to mitochondrial abnormalities in FTLD-TDP and suggest that CHCHD10 restoration could ameliorate mitochondrial dysfunction in FTLD-TDP.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , GTP Fosfohidrolasas/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Musculares/genética , Mutación/genética , Células 3T3 NIH , Fenotipo
2.
Mol Cell Neurosci ; 102: 103418, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31705957

RESUMEN

AIMS: The current study utilizes the adeno-associated viral gene transfer system in the CAMKIIα-tTA mouse model to overexpress human wild type TDP-43 (wtTDP-43) and α-synuclein (α-Syn) proteins. The co-existence of these proteins is evident in the pathology of neurodegenerative disorders such as frontotemporal lobar degeneration (FTLD), Parkinson disease (PD), and dementia with Lewy bodies (DLB). METHODS: The novel bicistronic recombinant adeno-associated virus (rAAV) serotype 9 drives wtTDP-43 and α-Syn expression in the hippocampus via "TetO" CMV promoter. Behavior, electrophysiology, and biochemical and histological assays were used to validate neuropathology. RESULTS: We report that overexpression of wtTDP-43 but not α-Syn contributes to hippocampal CA2-specific pyramidal neuronal loss and overall hippocampal atrophy. Further, we report a reduction of hippocampal long-term potentiation and decline in learning and memory performance of wtTDP-43 expressing mice. Elevated wtTDP-43 levels induced selective degeneration of Purkinje cell protein 4 (PCP-4) positive neurons while both wtTDP-43 and α-Syn expression reduced subsets of the glutamate receptor expression in the hippocampus. CONCLUSIONS: Overall, our findings suggest the significant vulnerability of hippocampal neurons toward elevated wtTDP-43 levels possibly via PCP-4 and GluR-dependent calcium signaling pathways. Further, we report that wtTDP-43 expression induced selective CA2 subfield degeneration, contributing to the deterioration of the hippocampal-dependent cognitive phenotype.


Asunto(s)
Región CA2 Hipocampal/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas de Unión al ADN/metabolismo , Potenciación a Largo Plazo , Memoria , Animales , Región CA2 Hipocampal/fisiología , Proteínas de Unión al ADN/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Aprendizaje por Laberinto , Ratones , Neuropéptidos/genética , Neuropéptidos/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , alfa-Sinucleína/metabolismo
3.
J Neuroinflammation ; 17(1): 283, 2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32979923

RESUMEN

BACKGROUND: Neuronal cytoplasmic inclusions containing TAR DNA-binding protein 43 (TDP-43) are a neuropathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's Disease (AD). Emerging evidence also indicates that systemic inflammation may be a contributor to the pathology progression of these neurodegenerative diseases. METHODS: To investigate the role of systemic inflammation in the progression of neuronal TDP-43 pathology, AAV9 particles driven by the UCHL1 promoter were delivered to the frontal cortex of wild-type aged mice via intracranial injections to overexpress TDP-43 or green fluorescent protein (GFP) in corticospinal motor neurons. Animals were then subjected to a low-dose (500 µg/kg) intraperitoneal E. coli lipopolysaccharide (LPS) administration challenge for 2 weeks to mimic a chronically altered low-grade systemic inflammatory state. Mice were then subjected to neurobehavioral studies, followed by biochemical and immunohistochemical analyses of the brain tissue. RESULTS: In the present study, we report that elevated neuronal TDP-43 levels induced microglial and astrocytic activation in the cortex of injected mice followed by increased RANTES signaling. Moreover, overexpression of TDP-43 exerted abundant mouse immunoglobulin G (IgG), CD3, and CD4+ T cell infiltration as well as endothelial and pericyte activation suggesting increased blood-brain barrier permeability. The BBB permeability in TDP-43 overexpressing brains yielded the frontal cortex vulnerable to the systemic inflammatory response following LPS treatment, leading to marked neutrophil infiltration, neuronal loss, reduced synaptosome-associated protein 25 (SNAP-25) levels, and behavioral impairments in the radial arm water maze (RAWM) task. CONCLUSIONS: These results reveal a novel role for TDP-43 in BBB permeability and leukocyte recruitment, indicating complex intermolecular interactions between an altered systemic inflammatory state and pathologically prone TDP-43 protein to promote disease progression.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar/fisiología , Proteínas de Unión al ADN/biosíntesis , Leucocitos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Animales , Barrera Hematoencefálica/patología , Permeabilidad Capilar/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Leucocitos/patología , Lipopolisacáridos/toxicidad , Masculino , Ratones , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Síndrome de Respuesta Inflamatoria Sistémica/patología
4.
J Neurosci ; 35(44): 14842-60, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26538654

RESUMEN

Tau accumulation remains one of the closest correlates of neuronal loss in Alzheimer's disease. In addition, tau associates with several other neurodegenerative diseases, collectively known as tauopathies, in which clinical phenotypes manifest as cognitive impairment, behavioral disturbances, and motor impairment. Polyamines act as bivalent regulators of cellular function and are involved in numerous biological processes. The regulation of the polyamines system can become dysfunctional during disease states. Arginase 1 (Arg1) and nitric oxide synthases compete for l-arginine to produce either polyamines or nitric oxide, respectively. Herein, we show that overexpression of Arg1 using adeno-associated virus (AAV) in the CNS of rTg4510 tau transgenic mice significantly reduced phospho-tau species and tangle pathology. Sustained Arg1 overexpression decreased several kinases capable of phosphorylating tau, decreased inflammation, and modulated changes in the mammalian target of rapamycin and related proteins, suggesting activation of autophagy. Arg1 overexpression also mitigated hippocampal atrophy in tau transgenic mice. Conversely, conditional deletion of Arg1 in myeloid cells resulted in increased tau accumulation relative to Arg1-sufficient mice after transduction with a recombinant AAV-tau construct. These data suggest that Arg1 and the polyamine pathway may offer novel therapeutic targets for tauopathies.


Asunto(s)
Arginasa/biosíntesis , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Tauopatías/enzimología , Tauopatías/patología , Proteínas tau/metabolismo , Animales , Arginasa/genética , Células HeLa , Hipocampo/enzimología , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Tauopatías/genética , Proteínas tau/genética
5.
J Neurochem ; 138(5): 653-93, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27248001

RESUMEN

Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article.


Asunto(s)
Astrocitos/metabolismo , Sistema Nervioso Central/metabolismo , Inmunidad Innata/inmunología , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Sistema Nervioso Central/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Enfermedades Neurodegenerativas/inmunología
6.
J Neuroinflammation ; 11: 152, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25183004

RESUMEN

BACKGROUND: Abnormal tau hyperphosphorylation and its accumulation into intra-neuronal neurofibrillary tangles are linked to neurodegeneration in Alzheimer's disease and similar tauopathies. One strategy to reduce accumulation is through immunization, but the most immunogenic tau epitopes have so far remained unknown. To fill this gap, we immunized mice with recombinant tau to build a map of the most immunogenic tau epitopes. METHODS: Non-transgenic and rTg4510 tau transgenic mice aged 5 months were immunized with either human wild-type tau (Wt, 4R0N) or P301L tau (4R0N). Each protein was formulated in Quil A adjuvant. Sera and splenocytes of vaccinated mice were collected to assess the humoral and cellular immune responses to tau. We employed a peptide array assay to identify the most effective epitopes. Brain histology was utilized to measure the effects of vaccination on tau pathology and inflammation. RESULTS: Humoral immune responses following immunization demonstrated robust antibody titers (up to 1:80,000 endpoint titers) to each tau species in both mice models. The number of IFN-γ producing T cells and their proliferation were also increased in splenocytes from immunized mice, indicating an increased cellular immune response, and tau levels and neuroinflammation were both reduced. We identified five immunogenic motifs within either the N-terminal (9-15 and 21-27 amino acids), proline rich (168-174 and 220-228 amino acids), or the C-terminal regions (427-438 amino acids) of the wild-type and P301L tau protein sequence. CONCLUSIONS: Our study identifies five previously unknown immunogenic motifs of wild-type and mutated (P301L) tau protein. Immunization with both proteins resulted in reduced tau pathology and neuroinflammation in a tau transgenic model, supporting the efficacy of tau immunotherapy in tauopathy.


Asunto(s)
Mapeo Epitopo , Epítopos/inmunología , Tauopatías/inmunología , Tauopatías/terapia , Vacunación/métodos , Proteínas tau/inmunología , Adyuvantes Inmunológicos/uso terapéutico , Animales , Anticuerpos/sangre , Proliferación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/etiología , Encefalitis/inmunología , Encefalitis/terapia , Ensayo de Inmunoadsorción Enzimática , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mutación/genética , Saponinas de Quillaja , Saponinas/uso terapéutico , Linfocitos T/efectos de los fármacos , Tauopatías/complicaciones , Tauopatías/patología , Proteínas tau/genética
7.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405854

RESUMEN

Importance: This study identifies and quantifies diverse pathological tau isoforms in the retina of both early and advanced-stage Alzheimer's disease (AD) and determines their relationship with disease status. Objective: A case-control study was conducted to investigate the accumulation of retinal neurofibrillary tangles (NFTs), paired helical filament (PHF)-tau, oligomeric tau (oligo-tau), hyperphosphorylated tau (p-tau), and citrullinated tau (Cit-tau) in relation to the respective brain pathology and cognitive dysfunction in mild cognitively impaired (MCI) and AD dementia patients versus normal cognition (NC) controls. Design setting and participants: Eyes and brains from donors diagnosed with AD, MCI (due to AD), and NC were collected (n=75 in total), along with clinical and neuropathological data. Brain and retinal cross-sections-in predefined superior-temporal and inferior-temporal (ST/IT) subregions-were subjected to histopathology analysis or Nanostring GeoMx digital spatial profiling. Main outcomes and measure: Retinal burden of NFTs (pretangles and mature tangles), PHF-tau, p-tau, oligo-tau, and Cit-tau was assessed in MCI and AD versus NC retinas. Pairwise correlations revealed associations between retinal and brain parameters and cognitive status. Results: Increased retinal NFTs (1.8-fold, p=0.0494), PHF-tau (2.3-fold, p<0.0001), oligo-tau (9.1-fold, p<0.0001), CitR 209 -tau (4.3-fold, p<0.0001), pSer202/Thr205-tau (AT8; 4.1-fold, p<0.0001), and pSer396-tau (2.8-fold, p=0.0015) were detected in AD patients. Retinas from MCI patients showed significant increases in NFTs (2.0-fold, p=0.0444), CitR 209 -tau (3.5-fold, p=0.0201), pSer396-tau (2.6-fold, p=0.0409), and, moreover, oligo-tau (5.8-fold, p=0.0045). Nanostring GeoMx quantification demonstrated upregulated retinal p-tau levels in MCI patients at phosphorylation sites of Ser214 (2.3-fold, p=0.0060), Ser396 (1.8-fold, p=0.0052), Ser404 (2.4-fold, p=0.0018), and Thr231 (3.3-fold, p=0.0028). Strong correlations were found between retinal tau forms to paired-brain pathology and cognitive status: a) retinal oligo-tau vs. Braak stage (r=0.60, P=0.0002), b) retinal PHF-tau vs. ABC average score (r=0.64, P=0.0043), c) retinal pSer396-tau vs. brain NFTs (r=0.68, P<0.0001), and d) retinal pSer202/Thr205-tau vs. MMSE scores (r= -0.77, P=0.0089). Conclusions and Relevance: This study reveals increases in immature and mature retinal tau isoforms in MCI and AD patients, highlighting their relationship with brain pathology and cognition. The data provide strong incentive to further explore retinal tauopathy markers that may be useful for early detection and monitoring of AD staging through noninvasive retinal imaging.

8.
J Neuroinflammation ; 10: 86, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23866683

RESUMEN

BACKGROUND: The chemokine (C-C motif) ligand 2 (CCL2) is a monocyte chemoattractant protein that mediates macrophage recruitment and migration during peripheral and central nervous system (CNS) inflammation. METHODS: To determine the impact of CCL2 in inflammation in vivo and to elucidate the CCL2-induced polarization of activated brain microglia, we delivered CCL2 into the brains of wild-type mice via recombinant adeno-associated virus serotype 9 (rAAV-9) driven by the chicken ß-actin promoter. We measured microglial activation using histological and chemical measurement and recruitment of monocytes using histology and flow cytometry. RESULTS: The overexpression of CCL2 in the CNS induced significant activation of brain resident microglia. CD45 and major histocompatibility complex class II immunoreactivity significantly increased at the sites of CCL2 administration. Histological characterization of the microglial phenotype revealed the elevation of "classically activated" microglial markers, such as calgranulin B and IL-1ß, as well as markers associated with "alternative activation" of microglia, including YM1 and arginase 1. The protein expression profile in the hippocampus demonstrated markedly increased levels of IL-6, GM-CSF and eotaxin (CCL-11) in response to CCL2, but no changes in the levels of other cytokines, including TNF-α and IFN-γ. Moreover, real-time PCR analysis confirmed increases in mRNA levels of gene transcripts associated with neuroinflammation following CCL2 overexpression. Finally, we investigated the chemotactic properties of CCL2 in vivo by performing adoptive transfer of bone marrow-derived cells (BMDCs) isolated from donor mice that ubiquitously expressed green fluorescent protein. Flow cytometry and histological analyses indicated that BMDCs extravasated into brain parenchyma and colabeled with microglial markers. CONCLUSION: Taken together, our results suggest that CCL2 strongly activates resident microglia in the brain. Both pro- and anti-inflammatory activation of microglia were prominent, with no bias toward the M1 or M2 phenotype in the activated cells. As expected, CCL2 overexpression actively recruited circulating monocytes into the CNS. Thus, CCL2 expression in mouse brain induces microglial activation and represents an efficient method for recruitment of peripheral macrophages.


Asunto(s)
Química Encefálica/fisiología , Quimiocina CCL2/fisiología , Activación de Macrófagos/efectos de los fármacos , Microglía/efectos de los fármacos , Traslado Adoptivo , Animales , Células de la Médula Ósea/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quimiocina CCL2/biosíntesis , Citocinas/biosíntesis , Dependovirus/genética , Expresión Génica/efectos de los fármacos , Técnicas de Transferencia de Gen , Vectores Genéticos , Proteínas Fluorescentes Verdes , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos
9.
Neurodegener Dis ; 11(4): 165-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22796753

RESUMEN

BACKGROUND: We aimed to investigate the influence of oligomeric forms of ß-amyloid (Aß) and the influence of the duration of exposure on the development of tau phosphorylation. METHODS: Aß oligomers were injected intracranially either acutely into 5-month-old rTg4510 mice and tissue was collected 3 days later, or chronically into 3-month-old mice and tissue was collected 2 months later. Several forms of phosphorylated tau (p-tau), GSK3 (glycogen synthase kinase-3) and microglial and astrocyte activation were measured. RESULTS: Acute injections of Aß oligomers had no effect on p-tau epitopes but did result in elevation of phosphorylated/activated GSK3 (pGSK3). Chronic infusion of Aß oligomers into the right hippocampus resulted in 3- to 4-fold elevations in several p-tau isoforms with no changes in total tau levels. A significant elevation in pGSK3 accompanied these changes. Microglial staining with CD68 paralleled the increase in tau phosphorylation, however, CD45 staining was unaffected by Aß. Control experiments revealed that the infusion of Aß from the minipumps was largely complete by 10 days after implantation. Thus, the elevation in p-tau 2 months after implantation implies that the changes are quite persistent. CONCLUSION: Soluble Aß(1-42) oligomers have long-lasting effects on tau phosphorylation in the rTg4510 model, possibly due to elevations in GSK3. These data suggest that even brief elevations in Aß production, may have enduring impact on the risk for tauopathy.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Hipocampo/efectos de los fármacos , Microglía/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Tauopatías/patología , Proteínas tau/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Tauopatías/metabolismo
10.
Geroscience ; 44(1): 173-194, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34410588

RESUMEN

C-terminal cleaved tau at D421 (∆D421-tau) accumulates in the brains of Alzheimer's disease (AD) patients. However, it is unclear how tau truncation, an understudied tau post-translational modification, contributes to AD pathology and progression. Utilizing an adeno-associated virus (AAV) gene delivery-based approach, we overexpressed full-length tau (FL-tau) and ∆D421-tau in 4- and 12-month-old mice for 4 months to study the neuropathological impact of accumulation in young adult (8-month) and middle-aged (16-month) mice. Overall, we show that independent of the tau species, age was an important factor facilitating tau phosphorylation, oligomer formation, and deposition into silver-positive tangles. However, mice overexpressing ∆D421-tau exhibited a distinct phosphorylation profile to those overexpressing FL-tau and increased tau oligomerization in the middle-age group. Importantly, overexpression of ∆D421-tau, but not FL-tau in middle-aged mice, resulted in pronounced cognitive impairments and hippocampal long-term potentiation deficits. While both FL-tau and ∆D421-tau induced neuronal loss in mice with age, ∆D421-tau led to significant neuronal loss in the CA3 area of the hippocampus and medial entorhinal cortex compared to FL-tau. Based on our data, we conclude that age increases the susceptibility to neuronal degeneration associated with ΔD421-tau accumulation. Our findings suggest that ΔD421-tau accumulation contributes to synaptic plasticity and cognitive deficits, thus representing a potential target for tau-associated pathologies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Animales , Cognición , Disfunción Cognitiva/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal
11.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165939, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882370

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is a nuclear RNA/DNA binding protein involved in mRNA metabolism. Aberrant mislocalization to the cytoplasm and formation of phosphorylated/aggregated TDP-43 inclusions remains the hallmark pathology in a spectrum of neurodegenerative diseases, including frontotemporal disorders and Alzheimer's disease. Eukaryotic Translation Initiation Factor 5A undergoes a unique post-translation modification of lysine to hypusine (K50), which determines eIF5A binding partners. We used a sodium arsenite-induced cellular stress model to investigate the role of hypusinated eIF5A (eIF5AHypK50) in governing TDP-43 cytoplasmic mislocalization and accumulation in stress granule. Our proteomics and functional data provide evidence that eIF5A interacts with TDP-43 in a hypusine-dependent manner. Additionally, we showed that following stress TDP-43 interactions with eIF5AHypK50 were induced both in the cytoplasm and stress granules. Pharmacological reduction of hypusination or mutations of lysine residues within the hypusine loop decreased phosphorylated and insoluble TDP-43 levels. The proteomic and biochemical analysis also identified nuclear pore complex importins KPNA1/2, KPNB1, and RanGTP as interacting partners of eIF5AHypK50. These findings are the first to provide a novel pathway and potential therapeutic targets that require further investigation in models of TDP-43 proteinopathies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Modelos Biológicos , Factores de Iniciación de Péptidos/metabolismo , Modificación Traduccional de las Proteínas , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Células HeLa , Humanos , Factores de Iniciación de Péptidos/genética , Proteínas de Unión al ARN/genética , Factor 5A Eucariótico de Iniciación de Traducción
12.
Front Immunol ; 12: 628156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34046031

RESUMEN

Brain myeloid cells, include infiltrating macrophages and resident microglia, play an essential role in responding to and inducing neurodegenerative diseases, such as Alzheimer's disease (AD). Genome-wide association studies (GWAS) implicate many AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform biological functions, whereas dysregulated arginine metabolism disrupts them. Altered arginine metabolism is proposed as a new biomarker pathway for AD. We previously reported Arg1 deficiency in myeloid biased cells using lysozyme M (LysM) promoter-driven deletion worsened amyloidosis-related neuropathology and behavioral impairment. However, it remains unclear how Arg1 deficiency in these cells impacts the whole brain to promote amyloidosis. Herein, we aim to determine how Arg1 deficiency driven by LysM restriction during amyloidosis affects fundamental neurodegenerative pathways at the transcriptome level. By applying several bioinformatic tools and analyses, we found that amyloid-ß (Aß) stimulated transcriptomic signatures in autophagy-related pathways and myeloid cells' inflammatory response. At the same time, myeloid Arg1 deficiency during amyloidosis promoted gene signatures of lipid metabolism, myelination, and migration of myeloid cells. Focusing on Aß associated glial transcriptomic signatures, we found myeloid Arg1 deficiency up-regulated glial gene transcripts that positively correlated with Aß plaque burden. We also observed that Aß preferentially activated disease-associated microglial signatures to increase phagocytic response, whereas myeloid Arg1 deficiency selectively promoted homeostatic microglial signature that is non-phagocytic. These transcriptomic findings suggest a critical role for proper Arg1 function during normal and pathological challenges associated with amyloidosis. Furthermore, understanding pathways that govern Arg1 metabolism may provide new therapeutic opportunities to rebalance immune function and improve microglia/macrophage fitness.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Arginasa/metabolismo , Encéfalo/enzimología , Perfilación de la Expresión Génica , Microglía/enzimología , Células Mieloides/enzimología , Degeneración Nerviosa , Transcriptoma , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Arginasa/genética , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Redes Reguladoras de Genes , Haploinsuficiencia , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Mutación , Células Mieloides/patología
13.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586680

RESUMEN

Tauopathies display a spectrum of phenotypes from cognitive to affective behavioral impairments; however, mechanisms promoting tau pathology and how tau elicits behavioral impairment remain unclear. We report a unique interaction between polyamine metabolism, behavioral impairment, and tau fate. Polyamines are ubiquitous aliphatic molecules that support neuronal function, axonal integrity, and cognitive processing. Transient increases in polyamine metabolism hallmark the cell's response to various insults, known as the polyamine stress response (PSR). Dysregulation of gene transcripts associated with polyamine metabolism in Alzheimer's disease (AD) brains were observed, and we found that ornithine decarboxylase antizyme inhibitor 2 (AZIN2) increased to the greatest extent. We showed that sustained AZIN2 overexpression elicited a maladaptive PSR in mice with underlying tauopathy (MAPT P301S; PS19). AZIN2 also increased acetylpolyamines, augmented tau deposition, and promoted cognitive and affective behavioral impairments. Higher-order polyamines displaced microtubule-associated tau to facilitate polymerization but also decreased tau seeding and oligomerization. Conversely, acetylpolyamines promoted tau seeding and oligomers. These data suggest that tauopathies launch an altered enzymatic signature that endorses a feed-forward cycle of disease progression. Taken together, the tau-induced PSR affects behavior and disease continuance, but may also position the polyamine pathway as a potential entry point for plausible targets and treatments of tauopathy, including AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Poliaminas Biogénicas/metabolismo , Carboxiliasas/metabolismo , Proteínas Portadoras/metabolismo , Hipocampo/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Carboxiliasas/genética , Proteínas Portadoras/genética , Femenino , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas tau/genética , Proteínas tau/metabolismo
14.
J Neuroinflammation ; 7: 56, 2010 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-20846376

RESUMEN

Inflammation and microglial activation are associated with Alzheimer's disease (AD) pathology. Somewhat surprisingly, injection of a prototypical inflammatory agent, lipopolysaccharide (LPS) into brains of amyloid precursor protein (APP) transgenic mice clears some of the pre-existing amyloid deposits. It is less well understood how brain inflammation modulates tau pathology in the absence of Aß. These studies examined the role of LPS-induced inflammation on tau pathology. We used transgenic rTg4510 mice, which express the P301L mutation (4R0N TauP301L) and initiate tau pathology between 3-5 months of age. First, we found an age-dependent increase in several markers of microglial activation as these rTg4510 mice aged and tau tangles accumulated. LPS injections into the frontal cortex and hippocampus induced significant activation of CD45 and arginase 1 in rTg4510 and non-transgenic mice. In addition, activation of YM1 by LPS was exaggerated in transgenic mice relative to non-transgenic animals. Expression of Ser199/202 and phospho-tau Ser396 was increased in rTg4510 mice that received LPS compared to vehicle injections. However, the numbers of silver-positive neurons, implying presence of more pre- and mature tangles, was not significantly affected by LPS administration. These data suggest that inflammatory stimuli can facilitate tau phosphorylation. Coupled with prior results demonstrating clearance of Aß by similar LPS injections, these results suggest that brain inflammation may have opposing effects on amyloid and tau pathology, possibly explaining the failures (to date) of anti-inflammatory therapies in AD patients.


Asunto(s)
Encefalitis/patología , Lóbulo Frontal/patología , Hipocampo/patología , Microglía/patología , Neuronas/patología , Proteínas tau/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Encefalitis/inducido químicamente , Encefalitis/metabolismo , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmunohistoquímica , Lipopolisacáridos/farmacología , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Tinción con Nitrato de Plata
15.
Front Immunol ; 11: 997, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508844

RESUMEN

Innate immune activation is a major contributor to Alzheimer's Disease (AD) pathophysiology, although the mechanisms involved are poorly understood. Chemokine C-C motif ligand (CCL) 2 is produced by neurons and glial cells and is upregulated in the AD brain. Transgene expression of CCL2 in mouse models of amyloidosis produces microglia-induced amyloid ß oligomerization, a strong indication of the role of these activation pathways in the amyloidogenic processes of AD. We have previously shown that CCL2 polarizes microglia in wild type mice. However, how CCL2 signaling contributes to tau pathogenesis remains unknown. To address this question, CCL2 was delivered via recombinant adeno-associated virus serotype 9 into both cortex and hippocampus of a mouse model with tau pathology (rTg4510). We report that CCL2 overexpression aggravated tau pathology in rTg4510 as shown by the increase in Gallyas stained neurofibrillary tangles as well as phosphorylated tau-positive inclusions. In addition, biochemical analysis showed a reduction in the levels of detergent-soluble tau species followed by increase in the insoluble fraction, indicating a shift toward larger tau aggregates. Indeed, increased levels of high molecular weight species of phosphorylated tau were found in the mice injected with CCL2. We also report that worsening of tau pathology following CCL2 overexpression was accompanied by a distinct inflammatory response. We report an increase in leukocyte common antigen (CD45) and Cluster of differentiation 68 (CD68) expression in the brain of rTg4510 mice without altering the expression levels of a cell-surface protein Transmembrane Protein 119 (Tmem119) and ionized calcium-binding adaptor molecule 1 (Iba-1) in resident microglia. Furthermore, the analysis of cytokines in brain extract showed a significant increase in interleukin (IL)-6 and CCL3, while CCL5 levels were decreased in CCL2 mice. No changes were observed in IL-1α, IL-1ß, TNF-α. IL-4, Vascular endothelial growth factor-VEGF, IL-13 and CCL11. Taken together our data report for the first time that overexpression of CCL2 promotes the increase of pathogenic tau species and is associated with glial neuroinflammatory changes that are deleterious. We propose that these events may contribute to the pathogenesis of Alzheimer's disease and other tauopathies.


Asunto(s)
Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Neuroglía/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/inmunología , Encéfalo/patología , Quimiocina CCL2/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Masculino , Ratones Transgénicos , Mutación , Neuroglía/inmunología , Neuroglía/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Transducción de Señal , Tauopatías/genética , Tauopatías/inmunología , Tauopatías/patología , Regulación hacia Arriba , Proteínas tau/genética
16.
Front Immunol ; 11: 582998, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519806

RESUMEN

Alzheimer's disease (AD) includes several hallmarks comprised of amyloid-ß (Aß) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1fl/fl and LysMcreTg/+ mice crossed with APP Tg2576 mice. Our data indicated that Arg1 haploinsufficiency promoted Aß deposition, exacerbated some behavioral impairment, and decreased components of Ragulator-Rag complex involved in mechanistic target of rapamycin complex 1 (mTORC1) signaling and autophagy. Additionally, Arg1 repression and arginine supplementation both impaired microglial phagocytosis in vitro. These data suggest that proper function of Arg1 and arginine metabolism in myeloid cells remains essential to restrict amyloidosis.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Arginasa/metabolismo , Déficit de la Atención y Trastornos de Conducta Disruptiva/metabolismo , Células Mieloides/fisiología , Animales , Arginasa/genética , Autofagia , Conducta Animal , Modelos Animales de Enfermedad , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Transgénicos , Inflamación Neurogénica , Transducción de Señal
17.
Alzheimers Res Ther ; 11(1): 58, 2019 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-31253191

RESUMEN

BACKGROUND: Tau stabilizes microtubules; however, in Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, aggregates, and results in neuronal death. Our group recently uncovered a unique interaction between polyamine metabolism and tau fate. Polyamines exert an array of physiological effects that support neuronal function and cognitive processing. Specific stimuli can elicit a polyamine stress response (PSR), resulting in altered central polyamine homeostasis. Evidence suggests that elevations in polyamines following a short-term stressor are beneficial; however, persistent stress and subsequent PSR activation may lead to maladaptive polyamine dysregulation, which is observed in AD, and may contribute to neuropathology and disease progression. METHODS: Male and female mice harboring tau P301L mutation (rTg4510) were examined for a tau-induced central polyamine stress response (tau-PSR). The direct effect of tau-PSR byproducts on tau fibrillization and oligomerization were measured using a thioflavin T assay and a N2a split superfolder GFP-Tau (N2a-ssGT) cell line, respectively. To therapeutically target the tau-PSR, we bilaterally injected caspase 3-cleaved tau truncated at aspartate 421 (AAV9 Tau ΔD421) into the hippocampus and cortex of spermidine/spermine-N1-acetyltransferase (SSAT), a key regulator of the tau-PSR, knock out (SSAT-/-), and wild type littermates, and the effects on tau neuropathology, polyamine dysregulation, and behavior were measured. Lastly, cellular models were employed to further examine how SSAT repression impacted tau biology. RESULTS: Tau induced a unique tau-PSR signature in rTg4510 mice, notably in the accumulation of acetylated spermidine. In vitro, higher-order polyamines prevented tau fibrillization but acetylated spermidine failed to mimic this effect and even promoted fibrillization and oligomerization. AAV9 Tau ΔD421 also elicited a unique tau-PSR in vivo, and targeted disruption of SSAT prevented the accumulation of acetylated polyamines and impacted several tau phospho-epitopes. Interestingly, SSAT knockout mice presented with altered behavior in the rotarod task, the elevated plus maze, and marble burying task, thus highlighting the impact of polyamine homeostasis within the brain. CONCLUSION: These data represent a novel paradigm linking tau pathology and polyamine dysfunction and that targeting specific arms within the polyamine pathway may serve as new targets to mitigate certain components of the tau phenotype.


Asunto(s)
Acetiltransferasas/metabolismo , Poliaminas/metabolismo , Estrés Fisiológico , Tauopatías/enzimología , Acetiltransferasas/genética , Animales , Femenino , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Agregación Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo
18.
J Immunol Methods ; 432: 51-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26784524

RESUMEN

Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body following insult or injury. Alternatively, this method might find utility in delivering therapeutic genes for neuroinflammatory conditions.


Asunto(s)
Células de la Médula Ósea , Trasplante de Médula Ósea , Encéfalo/patología , Rastreo Celular/métodos , Dependovirus/genética , Vectores Genéticos , Inflamación/patología , Transducción Genética , Animales , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Encéfalo/metabolismo , Antígeno CD11b/metabolismo , Modelos Animales de Enfermedad , Genes Reporteros , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Inflamación/genética , Inflamación/metabolismo , Inflamación/terapia , Lentivirus/genética , Ratones Endogámicos C57BL , Fenotipo
19.
Alzheimers Res Ther ; 8(1): 43, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27756387

RESUMEN

BACKGROUND: There is a need to investigate biomarkers that are indicative of the progression of dementia in ethnic patient populations. The disparity of information in these populations has been the focus of many clinical and academic centers, including ours, to contribute to a higher success rate in clinical trials. In this study, we have investigated plasma biomarkers in amnestic mild cognitively impaired (aMCI) female patient cohorts in the context of ethnicity and cognitive status. METHOD: A panel of 12 biomarkers involved in the progression of brain pathology, inflammation, and cardiovascular disorders were investigated in female cohorts of African American, Hispanic, and White aMCI patients. Both biochemical and algorithmic analyses were applied to correlate biomarker levels measured during the early stages of the disease for each ethnicity. RESULTS: We report elevated plasma Aß40, Aß42, YKL-40, and cystatin C levels in the Hispanic cohort at early aMCI status. In addition, elevated plasma Aß40 levels were associated with the aMCI status in both White and African American patient cohorts by the decision tree algorithm. Eotaxin-1 levels, as determined by the decision tree algorithm and biochemically measured total tau levels, were associated with the aMCI status in the African American cohort. CONCLUSIONS: Overall, our data displayed novel differences in the plasma biomarkers of the aMCI female cohorts where the plasma levels of several biomarkers distinguished between each ethnicity at an early aMCI stage. Identification of these plasma biomarkers encourages new areas of investigation among aMCI ethnic populations, including larger patient cohorts and longitudinal study designs.


Asunto(s)
Biomarcadores/sangre , Demencia , Negro o Afroamericano , Anciano , Anciano de 80 o más Años , Algoritmos , Péptidos beta-Amiloides/sangre , Proteína 1 Similar a Quitinasa-3/sangre , Estudios de Cohortes , Cistatina C/sangre , Árboles de Decisión , Demencia/sangre , Demencia/epidemiología , Demencia/etnología , Ensayo de Inmunoadsorción Enzimática , Femenino , Hispánicos o Latinos , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Escala del Estado Mental , Persona de Mediana Edad , Fragmentos de Péptidos/sangre , Progranulinas , Población Blanca
20.
Acta Neuropathol Commun ; 3: 8, 2015 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775028

RESUMEN

INTRODUCTION: The blood-brain barrier (BBB) is damaged in tauopathies, including progressive supranuclear palsy (PSP) and Alzheimer's disease (AD), which is thought to contribute to pathogenesis later in the disease course. In AD, BBB dysfunction has been associated with amyloid beta (Aß) pathology, but the role of tau in this process is not well characterized. Since increased BBB permeability is found in tauopathies without Aß pathology, like PSP, we suspected that tau accumulation alone could not only be sufficient, but even more important than Aß for BBB damage. RESULTS: Longitudinal evaluation of brain tissue from the tetracycline-regulatable rTg4510 tau transgenic mouse model showed progressive IgG, T cell and red blood cell infiltration. The Evans blue (EB) dye that is excluded from the brain when the BBB is intact also permeated the brains of rTg4510 mice following peripheral administration, indicative of a bonafide BBB defect, but this was only evident later in life. Thus, despite the marked brain atrophy and inflammation that occurs earlier in this model, BBB integrity is maintained. Interestingly, BBB dysfunction emerged at the same time that perivascular tau emerged around major hippocampal blood vessels. However, when tau expression was suppressed using doxycycline, BBB integrity was preserved, suggesting that the BBB can be stabilized in a tauopathic brain by reducing tau levels. CONCLUSIONS: For the first time, these data demonstrate that tau alone can initiate breakdown of the BBB, but the BBB is remarkably resilient, maintaining its integrity in the face of marked brain atrophy, neuroinflammation and toxic tau accumulation. Moreover, the BBB can recover integrity when tau levels are reduced. Thus, late stage interventions targeting tau may slow the vascular contributions to cognitive impairment and dementia that occur in tauopathies.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Regulación de la Expresión Génica/genética , Tauopatías/patología , Proteínas tau/deficiencia , Factores de Edad , Análisis de Varianza , Animales , Antígenos CD/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Doxiciclina/farmacología , Eritrocitos/patología , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmunoglobulina G/metabolismo , Estudios Longitudinales , Ratones , Ratones Transgénicos , Linfocitos T/patología , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA