RESUMEN
We used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for both gene function studies and use as new animal models of human disease (Nolan et al. 2000b). One focus of the program was the development of a blood biochemistry screen. At 8-12 weeks of age, approximately 300 ml of blood was collected from F1 offspring of ENU mutagenized male mice. This yielded approximately 125 ml of plasma, used to perform a profile of 17 standard biochemical tests on an Olympus analyzer. Cohorts of F1 mice were also aged and then retested to detect late onset phenotypes. In total, 1,961 F1s were screened. Outliers were identified by running means and standard deviations. Of 70 mice showing consistent abnormalities in plasma biochemistry, 29 were entered into inheritance testing. Of these, 9 phenotypes were confirmed as inherited, 10 found not to be inherited, and 10 are still being tested. Inherited mutant phenotypes include abnormal lipid profiles (low total and HDL cholesterol, high triglycerides); abnormalities in bone and liver metabolism (low ALP, high ALP, high ALT, and AST); abnormal plasma electrolyte levels (high sodium and chloride); as well as phenotypes of interest for the study of diabetes (high glucose). The gene loci bearing the mutations are currently being mapped and further characterized. Our results have validated our biochemical screen, which is applicable to other mutagenesis projects, and we have produced a new set of mutants with defined metabolic phenotypes.
Asunto(s)
Fenotipo , Plasma/química , Animales , Modelos Animales de Enfermedad , Etilnitrosourea/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Mutantes , MutagénesisRESUMEN
With the completion of the first draft of the human genome sequence, the next major challenge is assigning function to genes. One approach is genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes of interest and subsequent mapping and identification of the mutated genes in question. We (a consortium made up of GlaxoSmithKline, the MRC Mammalian Genetics Unit and Mouse Genome Centre, Harwell, Imperial College, London, and the Royal London Hospital) have used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for use as animal models of human disease and for gene function assignment (Nolan et al., 2000). As of 2003, 35,000 mice have been produced to date in a genome-wide screen for dominant mutations and screened using a variety of screening protocols. Nearly 200 mutants have been confirmed as heritable and added to the mouse mutant catalogue and, overall, we can extrapolate that we have recovered over 700 mutants from the screening programme. For further information on the project and details of the data, see http://www.mgu.har.mrc.ac.uk/mutabase.