Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Sex Differ ; 15(1): 46, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845040

RESUMEN

BACKGROUND: Sex hormones and sex chromosomes play a vital role in cardiovascular disease. Testosterone plays a crucial role in men's health. Lower testosterone level is associated with cardiovascular and cardiometabolic diseases, including inflammation, atherosclerosis, and type 2 diabetes. Testosterone replacement is beneficial or neutral to men's cardiovascular health. Testosterone deficiency is associated with cardiovascular events. Testosterone supplementation to hypogonadal men improves libido, increases muscle strength, and enhances mood. We hypothesized that sex chromosomes (XX and XY) interaction with testosterone plays a role in arterial stiffening. METHODS: We used four core genotype male mice to understand the inherent contribution of sex hormones and sex chromosome complement in arterial stiffening. Age-matched mice were either gonadal intact or castrated at eight weeks plus an additional eight weeks to clear endogenous sex hormones. This was followed by assessing blood pressure, pulse wave velocity, echocardiography, and ex vivo passive vascular mechanics. RESULTS: Arterial stiffening but not blood pressure was more significant in castrated than testes-intact mice independent of sex chromosome complement. Castrated mice showed a leftward shift in stress-strain curves and carotid wall thinning. Sex chromosome complement (XX) in the absence of testosterone increased collagen deposition in the aorta and Kdm6a gene expression. CONCLUSION: Testosterone deprivation increases arterial stiffening and vascular wall remodeling. Castration increases Col1α1 in male mice with XX sex chromosome complement. Our study shows decreased aortic contractile genes in castrated mice with XX than XY sex chromosomes.


Cardiovascular disease is the leading cause of death worldwide. Cardiovascular disease presents differently in men and women. While men develop plaque buildup in large arteries, women develop buildup in the microvessels in the heart. Arterial stiffening, which is the hardening of arteries, increases with age in both men and women. Aging, coupled with the decline in sex hormones, exacerbates cardiovascular disease in women compared to men. Men with XY sex chromosomes have higher circulating testosterone, while women with XX sex chromosomes have increased circulating estradiol. The potential benefits of sex hormone replacement therapy are shown in men and women. Indeed, testosterone replacement deficiency is associated with adverse cardiovascular outcomes in men. Whether adverse events are dependent or independent of sex hormones' interaction with sex chromosomes is unknown. This study used the four core genotype mice comprising males with either XX or XY sex chromosome complement. We show castration increases arterial stiffening and collagen deposition on the arterial wall. We also identified the escapee and smooth muscle contractile genes that may play a role in arterial stiffening. Our data suggests that testosterone deprivation mediates arterial stiffening and remodeling.


Asunto(s)
Cromosomas Sexuales , Testosterona , Rigidez Vascular , Animales , Masculino , Testosterona/sangre , Testosterona/farmacología , Ratones , Ratones Endogámicos C57BL , Presión Sanguínea , Orquiectomía
2.
Res Sq ; 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37886462

RESUMEN

Background: Testosterone plays a vital role in men's health. Lower testosterone level is associated with cardiovascular and cardiometabolic diseases, including inflammation, atherosclerosis, and type 2 diabetes. Testosterone replacement is beneficial or neutral to men's cardiovascular health. Testosterone deficiency is associated with cardiovascular events. Testosterone supplementation to hypogonadal men improves libido, increases muscle strength, and enhances mood. We hypothesized that sex chromosomes (XX and XY) interaction with testosterone plays a role in arterial stiffening. Methods: We used four core genotype male mice to understand the inherent contribution of sex hormones and sex chromosome complement in arterial stiffening. Age-matched mice were either gonadal intact or castrated for eight weeks, followed by an assessment of blood pressure, pulse wave velocity, echocardiography, and ex vivo passive vascular mechanics. Results: Arterial stiffening but not blood pressure was more significant in castrated than testes-intact mice independent of sex chromosome complement. Castrated mice showed a leftward shift in stress-strain curves and carotid wall thinning. Sex chromosome complement (XX) in the absence of testosterone increased collagen deposition in the aorta and Kdm6a gene expression. Conclusion: Testosterone deprivation increases arterial stiffening and vascular wall remodeling. Castration increases Col1α1 in male mice with XX sex chromosome complement. Our study shows decreased aortic contractile genes in castrated mice with XX than XY sex chromosomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA