Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Pharmacol ; 72(3): 143-152, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29927783

RESUMEN

Liposomes have the potential to be used for drug delivery. Meanwhile, liposome size may affect their accumulation in the target tissue. We investigated the myocardial accumulation of 2 populations of liposomes (∼70 and 110 nm diameter) during ischemia and their effect on ischemia/reperfusion injury. Isolated rat hearts were subjected to 30 minutes of low-flow ischemia with the liposomes, followed by 30 minutes of liposome-free reperfusion. The liposomes were loaded with the fluorescent dye Nile Red to assess their accumulation in the myocardium. The cardiac functional recovery during reperfusion was evaluated using force-velocity characteristics and coronary flow (CF). Reperfusion injury was evaluated by lactate dehydrogenase release. In addition, CF and contractility were assessed in hearts perfused normally with 70 nm liposomes. There was a 6- and 4-fold greater accumulation of the small liposomes in the myocardium and mitochondria, respectively, compared with the large liposomes. Importantly, even without any incorporated drugs, both populations of liposomes improved functional recovery and reduced lactate dehydrogenase release. However, the smaller liposomes showed significantly higher protective and vasodilatory effects during reperfusion than the larger particles. These liposomes also increased CF and contractility during normal perfusion. We suggest that the protective properties of the liposomes could be related to their membrane-stabilizing effect.


Asunto(s)
Metabolismo de los Lípidos , Lípidos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Animales , Circulación Coronaria , Preparación de Corazón Aislado , L-Lactato Deshidrogenasa/metabolismo , Liposomas , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Tamaño de la Partícula , Ratas , Ratas Wistar , Vasodilatación
2.
Int J Mol Sci ; 17(11)2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27854352

RESUMEN

The blend of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) has recently been considered promising for vascular tissue engineering. However, it was shown that PHBV/PCL grafts require biofunctionalization to achieve high primary patency rate. Here we compared immobilization of arginine-glycine-aspartic acid (RGD)-containing peptides and the incorporation of vascular endothelial growth factor (VEGF) as two widely established biofunctionalization approaches. Electrospun PHBV/PCL small-diameter grafts with either RGD peptides or VEGF, as well as unmodified grafts were implanted into rat abdominal aortas for 1, 3, 6, and 12 months following histological and immunofluorescence assessment. We detected CD31⁺/CD34⁺/vWF⁺ cells 1 and 3 months postimplantation at the luminal surface of PHBV/PCL/RGD and PHBV/PCL/VEGF, but not in unmodified grafts, with the further observation of CD31⁺CD34-vWF⁺ phenotype. These cells were considered as endothelial and produced a collagen-positive layer resembling a basement membrane. Detection of CD31⁺/CD34⁺ cells at the early stages with subsequent loss of CD34 indicated cell adhesion from the bloodstream. Therefore, either conjugation with RGD peptides or the incorporation of VEGF promoted the formation of a functional endothelial cell layer. Furthermore, both modifications increased primary patency rate three-fold. In conclusion, both of these biofunctionalization approaches can be considered as equally efficient for the modification of tissue-engineered vascular grafts.


Asunto(s)
Prótesis Vascular , Materiales Biocompatibles Revestidos/química , Proteínas Inmovilizadas/química , Oligopéptidos/química , Factor A de Crecimiento Endotelial Vascular/química , Animales , Antígenos CD34/análisis , Implantación de Prótesis Vascular , Adhesión Celular , Células Endoteliales/citología , Masculino , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Ratas Wistar , Ingeniería de Tejidos
3.
Polymers (Basel) ; 11(1)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30960158

RESUMEN

Modification with Arg-Gly-Asp (RGD) peptides is a promising approach to improve biocompatibility of small-calibre vascular grafts but it is unknown how different RGD sequence composition impacts graft performance. Here we manufactured 1.5 mm poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) grafts modified by distinct linear or cyclic RGD peptides immobilized by short or long amine linker arms. Modified vascular prostheses were tested in vitro to assess their mechanical properties, hemocompatibility, thrombogenicity and endothelialisation. We also implanted these grafts into rat abdominal aortas with the following histological examination at 1 and 3 months to evaluate their primary patency, cellular composition and detect possible calcification. Our results demonstrated that all modes of RGD modification reduce ultimate tensile strength of the grafts. Modification of prostheses does not cause haemolysis upon the contact with modified grafts, yet all the RGD-treated grafts display a tendency to promote platelet aggregation in comparison with unmodified counterparts. In vivo findings identify that cyclic Arg-Gly-Asp-Phe-Lys peptide in combination with trioxa-1,13-tridecanediamine linker group substantially improve graft biocompatibility. To conclude, here we for the first time compared synthetic small-diameter vascular prostheses with different modes of RGD modification. We suggest our graft modification regimen as enhancing graft performance and thus recommend it for future use in tissue engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA