Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Phys Rev Lett ; 131(6): 065102, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625047

RESUMEN

We discovered a simple regime where a near-critical plasma irradiated by a laser of experimentally available intensity can self-organize to produce positrons and accelerate them to ultrarelativistic energies. The laser pulse piles up electrons at its leading edge, producing a strong longitudinal plasma electric field. The field creates a moving gamma-ray collider that generates positrons via the linear Breit-Wheeler process-annihilation of two gamma rays into an electron-positron pair. At the same time, the plasma field, rather than the laser, serves as an accelerator for the positrons. The discovery of positron acceleration was enabled by a first-of-its-kind kinetic simulation that generates pairs via photon-photon collisions. Using available laser intensities of 10^{22} W/cm^{2}, the discovered regime can generate a GeV positron beam with a divergence angle of around 10° and a total charge of 0.1 pC. The result paves the way to experimental observation of the linear Breit-Wheeler process and to applications requiring positron beams.

2.
Phys Rev Lett ; 124(8): 084802, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167312

RESUMEN

Acceleration of particles from the interaction of ultraintense laser pulses up to 5×10^{21} W cm^{-2} with thin foils is investigated experimentally. The electron beam parameters varied with decreasing spot size, not just laser intensity, resulting in reduced temperatures and divergence. In particular, the temperature saturated due to insufficient acceleration length in the tightly focused spot. These dependencies affected the sheath-accelerated protons, which showed poorer spot-size scaling than widely used scaling laws. It is therefore shown that maximizing laser intensity by using very small foci has reducing returns for some applications.

3.
Phys Rev Lett ; 122(15): 155002, 2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31050520

RESUMEN

The rapid heating of a thin titanium foil by a high intensity, subpicosecond laser is studied by using a 2D narrow-band x-ray imaging and x-ray spectroscopy. A novel monochromatic imaging diagnostic tuned to 4.51 keV Ti Kα was used to successfully visualize a significantly ionized area (⟨Z⟩>17±1) of the solid density plasma to be within a ∼35 µm diameter spot in the transverse direction and 2 µm in depth. The measurements and a 2D collisional particle-in-cell simulation reveal that, in the fast isochoric heating of solid foil by an intense laser light, such a high ionization state in solid titanium is achieved by thermal diffusion from the hot preplasma in a few picoseconds after the pulse ends. The shift of Kα and formation of a missing Kα cannot be explained with the present atomic physics model. The measured Kα image is reproduced only when a phenomenological model for the Kα shift with a threshold ionization of ⟨Z⟩=17 is included. This work reveals how the ionization state and electron temperature of the isochorically heated nonequilibrium plasma are independently increased.

4.
Phys Rev Lett ; 117(5): 055001, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517775

RESUMEN

A tailored-pulse-imploded core with a diameter of 70 µm is flashed by counterirradiating 110 fs, 7 TW laser pulses. Photon emission (>40 eV) from the core exceeds the emission from the imploded core by 6 times, even though the heating pulse energies are only one seventh of the implosion energy. The coupling efficiency from the heating laser to the core using counterirradiation is 14% from the enhancement of photon emission. Neutrons are also produced by counterpropagating fast deuterons accelerated by the photon pressure of the heating pulses. A collisional two-dimensional particle-in-cell simulation reveals that the collisionless two counterpropagating fast-electron currents induce mega-Gauss magnetic filaments in the center of the core due to the Weibel instability. The counterpropagating fast-electron currents are absolutely unstable and independent of the core density and resistivity. Fast electrons with energy below a few MeV are trapped by these filaments in the core region, inducing an additional coupling. This might lead to the observed bright photon emissions.

5.
Phys Rev Lett ; 114(21): 215001, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26066440

RESUMEN

We report new experimental results obtained on three different laser facilities that show directed laser-driven relativistic electron-positron jets with up to 30 times larger yields than previously obtained and a quadratic (∼E_{L}^{2}) dependence of the positron yield on the laser energy. This favorable scaling stems from a combination of higher energy electrons due to increased laser intensity and the recirculation of MeV electrons in the mm-thick target. Based on this scaling, first principles simulations predict the possibility of using such electron-positron jets, produced at upcoming high-energy laser facilities, to probe the physics of relativistic collisionless shocks in the laboratory.

6.
Phys Rev Lett ; 114(19): 195002, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26024175

RESUMEN

A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

7.
Phys Rev Lett ; 110(2): 025001, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23383907

RESUMEN

The effect of target material on fast-electron transport is investigated using a high-intensity (0.7 ps, 10(20) W/cm2) laser pulse irradiated on multilayered solid Al targets with embedded transport (Au, Mo, Al) and tracer (Cu) layers, backed with millimeter-thick carbon foils to minimize refluxing. We consistently observed a more collimated electron beam (36% average reduction in fast-electron induced Cu Kα spot size) using a high- or mid-Z (Au or Mo) layer compared to Al. All targets showed a similar electron flux level in the central spot of the beam. Two-dimensional collisional particle-in-cell simulations showed formation of strong self-generated resistive magnetic fields in targets with a high-Z transport layer that suppressed the fast-electron beam divergence; the consequent magnetic channels guided the fast electrons to a smaller spot, in good agreement with experiments. These findings indicate that fast-electron transport can be controlled by self-generated resistive magnetic fields and may have important implications to fast ignition.

8.
Rev Sci Instrum ; 94(3): 033511, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012804

RESUMEN

High-power, short-pulse laser-driven fast electrons can rapidly heat and ionize a high-density target before it hydrodynamically expands. The transport of such electrons within a solid target has been studied using two-dimensional (2D) imaging of electron-induced Kα radiation. However, it is currently limited to no or picosecond scale temporal resolutions. Here, we demonstrate femtosecond time-resolved 2D imaging of fast electron transport in a solid copper foil using the SACLA x-ray free electron laser (XFEL). An unfocused collimated x-ray beam produced transmission images with sub-micron and ∼10 fs resolutions. The XFEL beam, tuned to its photon energy slightly above the Cu K-edge, enabled 2D imaging of transmission changes induced by electron isochoric heating. Time-resolved measurements obtained by varying the time delay between the x-ray probe and the optical laser show that the signature of the electron-heated region expands at ∼25% of the speed of light in a picosecond duration. Time-integrated Cu Kα images support the electron energy and propagation distance observed with the transmission imaging. The x-ray near-edge transmission imaging with a tunable XFEL beam could be broadly applicable for imaging isochorically heated targets by laser-driven relativistic electrons, energetic protons, or an intense x-ray beam.

9.
Phys Rev Lett ; 108(5): 055001, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22400936

RESUMEN

The dynamics of the focusing of laser-driven ion beams produced from concave solid targets was studied. Most of the ion beam energy is observed to converge at the center of the cylindrical targets with a spot diameter of 30 µm, which can be very beneficial for applications requiring high beam energy densities. Also, unbalanced laser irradiation does not compromise the focusability of the beam. However, significant filamentation occurs during the focusing, potentially limiting the localization of the energy deposition region by these beams at focus. These effects could impact the applicability of such high-energy density beams for applications, e.g., in proton-driven fast ignition.

10.
Phys Rev Lett ; 108(15): 155001, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22587260

RESUMEN

A compact fast core heating experiment is described. A 4-J 0.4-ns output of a laser-diode-pumped high-repetition laser HAMA is divided into four beams, two of which counterilluminate double-deuterated polystyrene foils separated by 100 µm for implosion. The remaining two beams, compressed to 110 fs for fast heating, illuminate the same paths. Hot electrons produced by the heating pulses heat the imploded core, emitting x-ray radiations >20 eV and yielding some 10(3) thermal neutrons.

11.
Sci Rep ; 12(1): 6876, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477961

RESUMEN

High energy density physics is the field of physics dedicated to the study of matter and plasmas in extreme conditions of temperature, densities and pressures. It encompasses multiple disciplines such as material science, planetary science, laboratory and astrophysical plasma science. For the latter, high energy density states can be accompanied by extreme radiation environments and super-strong magnetic fields. The creation of high energy density states in the laboratory consists in concentrating/depositing large amounts of energy in a reduced mass, typically solid material sample or dense plasma, over a time shorter than the typical timescales of heat conduction and hydrodynamic expansion. Laser-generated, high current-density ion beams constitute an important tool for the creation of high energy density states in the laboratory. Focusing plasma devices, such as cone-targets are necessary in order to focus and direct these intense beams towards the heating sample or dense plasma, while protecting the proton generation foil from the harsh environments typical of an integrated high-power laser experiment. A full understanding of the ion beam dynamics in focusing devices is therefore necessary in order to properly design and interpret the numerous experiments in the field. In this work, we report a detailed investigation of large-scale, kilojoule-class laser-generated ion beam dynamics in focusing devices and we demonstrate that high-brilliance ion beams compress magnetic fields to amplitudes exceeding tens of kilo-Tesla, which in turn play a dominant role in the focusing process, resulting either in a worsening or enhancement of focusing capabilities depending on the target geometry.

12.
13.
Phys Rev Lett ; 107(13): 135005, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-22026865

RESUMEN

The possibility of dynamically shaping mega-ampere electron currents generated in solids by ultraintense laser pulses in various conductor materials has been investigated. By tuning the target ionization dynamics, which depends both on the target material properties and on the input electron beam characteristics, we can control the growth of resistive magnetic fields that feedback on the current transport. As a result, collimation, hollowing, or filamentation of the electron beam can all be obtained. These results are beneficial for applications such as the production of secondary particles and radiation sources and fast ignition of inertial confinement fusion.


Asunto(s)
Algoritmos , Electrones , Campos Magnéticos , Metales/química , Método de Montecarlo
14.
Rev Sci Instrum ; 92(1): 013510, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514225

RESUMEN

In pump-probe experiments with an X-ray Free Electron Laser (XFEL) and a high-power optical laser, spatial overlap of the two beams must be ensured to probe a pumped area with the x-ray beam. A beam monitoring diagnostic is particularly important in short-pulse laser experiments where a tightly focused beam is required to achieve a relativistic laser intensity for generation of energetic particles. Here, we report the demonstration of on-shot beam pointing measurements of an XFEL and a terawatt class femtosecond laser using 2D monochromatic Kα imaging at the Matter in Extreme Conditions end-station of the Linac Coherent Light Source. A thin solid titanium foil was irradiated by a 25-TW laser for fast electron isochoric heating, while a 7.0 keV XFEL beam was used to probe the laser-heated region. Using a spherical crystal imager (SCI), the beam overlap was examined by measuring 4.51 keV Kα x rays produced by laser-accelerated fast electrons and the x-ray beam. Measurements were made for XFEL-only at various focus lens positions, laser-only, and two-beam shots. Successful beam overlapping was observed on ∼58% of all two-beam shots for 10 µm thick samples. It is found that large spatial offsets of laser-induced Kα spots are attributed to imprecise target positioning rather than shot-to-shot laser pointing variations. By applying the Kα measurements to x-ray Thomson scattering measurements, we found an optimum x-ray beam spot size that maximizes scattering signals. Monochromatic x-ray imaging with the SCI could be used as an on-shot beam pointing monitor for XFEL-laser or multiple short-pulse laser experiments.

15.
Phys Rev Lett ; 105(22): 225001, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-21231391

RESUMEN

The influence of long (several millimeters) and hollow channels, bored in inhomogeneous ionized plasma by using a long pulse laser beam, on the propagation of short, ultraintense laser pulses has been studied. Compared to the case without a channel, propagation in channels significantly improves beam transmission and maintains a beam quality close to propagation in vacuum. In addition, the growth of the forward-Raman instability is strongly reduced. These results are beneficial for the direct scheme of the fast ignitor concept of inertial confinement fusion as we demonstrate, in fast-ignition-relevant conditions, that with such channels laser energy can be carried through increasingly dense plasmas close to the fuel core with minimal losses.

16.
Nature ; 432(7020): 1005-8, 2004 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-15616556

RESUMEN

The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.

17.
Phys Rev E ; 102(3-1): 033202, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33075864

RESUMEN

Magnetic reconnection in a relativistic electron magnetization regime was observed in a laboratory plasma produced by a high-intensity, large energy, picoseconds laser pulse. Magnetic reconnection conditions realized with a laser-driven several kilotesla magnetic field is comparable to that in the accretion disk corona of black hole systems, i.e., Cygnus X-1. We observed particle energy distributions of reconnection outflow jets, which possess a power-law component in a high-energy range. The hardness of the observed spectra could explain the hard-state x-ray emission from accreting black hole systems.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 066406, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19658611

RESUMEN

We investigate the hydrodynamic response of plasma gradients during the interaction with ultraintense energetic laser pulses using kinetic particle simulations. Energetic laser pulses are capable of compressing preformed plasma gradients over short times, while accelerating low-density plasma backward. As light is absorbed on a steepened interface, hot-electron temperature and coupling efficiency drop below the ponderomotive scaling and we are left with an absorption mechanism that strongly relies on the electrostatic potential caused by low-density preformed plasma. We describe this process, discuss properties of the resulting electron spectra and identify the parameter regime where strong compression occurs. Finally, we discuss implications for fast ignition and other applications.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(3 Pt 2): 036408, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19392065

RESUMEN

We report experiments demonstrating enhanced coupling efficiencies of high-contrast laser irradiation to nanofabricated conical targets. Peak temperatures near 200 eV are observed with modest laser energy (10 J), revealing similar hot-electron localization and material heating to reduced mass targets (RMTs), despite having a significantly larger mass. Collisional particle-in-cell simulations attribute the enhancement to self-generated resistive (approximately 10 MG) magnetic fields forming within the curvature of the cone wall, which confine energetic electrons to heat a reduced volume at the tip. This represents a different electron confinement mechanism (magnetic, as opposed to electrostatic sheath confinement in RMTs) controllable by target shape.

20.
Nat Commun ; 10(1): 2995, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278266

RESUMEN

Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA