Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8005): 789-796, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538940

RESUMEN

The Antarctic Circumpolar Current (ACC) represents the world's largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1-3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial-interglacial cycles5-8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9 and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11-13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2 during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming.

2.
Sci Rep ; 6: 30647, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27507793

RESUMEN

Approximately 34 million years ago across the Eocene-Oligocene transition (EOT), Earth's climate tipped from a largely unglaciated state into one that sustained large ice sheets on Antarctica. Antarctic glaciation is attributed to a threshold response to slow decline in atmospheric CO2 but our understanding of the feedback processes triggered and of climate change on the other contents is limited. Here we present new geochemical records of terrigenous dust accumulating on the sea floor across the EOT from a site in the central equatorial Pacific. We report a change in dust chemistry from an Asian affinity to a Central-South American provenance that occurs geologically synchronously with the initiation of stepwise global cooling, glaciation of Antarctica and aridification on the northern continents. We infer that the inter-tropical convergence zone of intense precipitation extended to our site during late Eocene, at least four degrees latitude further south than today, but that it migrated northwards in step with global cooling and initiation of Antarctic glaciation. Our findings point to an atmospheric teleconnection between extratropical cooling and rainfall climate in the tropics and the mid-latitude belt of the westerlies operating across the most pivotal transition in climate state of the Cenozoic Era.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA