Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 239(4): e31196, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240115

RESUMEN

The NOD-, LRR-, and Pyrin domain-containing protein 3 (NLRP3) inflammasome plays key roles in regulating inflammation. Numerous studies show that the abnormal activation of NLRP3 associates with the initiation and progression of various diseases. Hence, the NLRP3 inflammasome may be a promising therapeutic target for these diseases. Octyl gallate (OG) is a small molecule with antioxidant, antimicrobial, antifungal, and anti-inflammatory activities; however, the mechanism underlying its anti-inflammatory activity is still unclear. Here, we developed a screening system for NLRP3-inflammasome inhibitors. A total of 3287 small molecules were screened for inhibitors of nigericin-induced NLRP3 oligomerization. OG was identified as a novel inhibitor. We show that OG directly targets the LRR domain of NLRP3 and thereby blocks the inflammatory cascade of the NLRP3 inflammasome. This contrasts with the mode-of-action of other direct NLRP3 inhibitors, which all bind to the NACHT domain of NLRP3. Interestingly, OG also inhibits the priming step by downregulating the Raf-MEK1/2-ERK1/2 axis. Thus, OG inhibits the NLRP3 inflammasome by two distinct mechanisms. Importantly, OG injection ameliorated the inflammation in mouse models of foot gout and sepsis. Our study identifies OG as a potential therapeutic agent for NLRP3-associated diseases.


Asunto(s)
Antiinflamatorios , Ácido Gálico , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ácido Gálico/análogos & derivados , Inflamasomas/efectos de los fármacos , Inflamación/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones Endogámicos C57BL , Masculino , Dominios Proteicos
2.
Soft Matter ; 20(11): 2584-2591, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415992

RESUMEN

The interplay between polyphenols, amines, and metals has broad implications for surface chemistry, biomaterials, energy storage, and environmental science. Traditionally, polyphenol-amine combinations have been recognized for their ability to form adhesive, material-independent thin layers that offer a diverse range of surface functionalities. Herein, we demonstrate that a coating of tannic acid (TA) and polyethyleneimine (PEI) provides an efficient platform for capturing and monitoring metal ions in water. A unique feature of our PEI/TA-coated microbeads is the 'Detection-Capture' (Detec-Ture) mechanism. The galloyl groups in TA coordinate with Fe(III) ions (capture), initiating their oxidation to gallol-quinone. These oxidized groups subsequently react with PEI amines, leading to the formation of an Fe(II/III)-gallol-PEI network that produces a vivid purple color, thereby enabling visual detection. This mechanism couples metal capture directly with detection, distinguishing our approach from existing studies, which have either solely focused on metal removal or metal detection. The metal capturing capacity of our materials stands at 0.55 mg g-1, comparable to that of established materials like alginate and wollastonite. The detection sensitivity reaches down to 0.5 ppm. Our findings introduce a novel approach to the utility of metal-polyphenol-amine networks, presenting a new class of materials suited for simultaneous metal ion detection and capture in environmental applications.

3.
ACS Biomater Sci Eng ; 10(6): 4035-4045, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38778794

RESUMEN

Frequent blood glucose monitoring is a crucial routine for diabetic patients. Traditional invasive methods can cause discomfort and pain and even pose a risk of infection. As a result, researchers have been exploring noninvasive techniques. However, a limited number of products have been developed for the market due to their high cost. In this study, we developed a low-cost, highly accessible, and noninvasive contact lens-based glucose monitoring system. We functionalized the surface of the contact lens with boronic acid, which has a strong but reversible binding affinity to glucose. To achieve facile conjugation of boronic acid, we utilized a functional coating layer called poly(tannic acid). The functionalized contact lens binds to glucose in body fluids (e.g., tear) and releases it when soaked in an enzymatic cocktail, allowing for the glucose level to be quantified through a colorimetric assay. Importantly, the transparency and oxygen permeability of the contact lens, which are crucial for practical use, were maintained after functionalization, and the lenses showed high biocompatibility. Based on the analysis of colorimetric data generated by the smartphone application and ultraviolet-visible (UV-vis) spectra, we believe that this contact lens has a high potential to be used as a smart diagnostic tool for monitoring and managing blood glucose levels.


Asunto(s)
Colorimetría , Lentes de Contacto , Glucosa , Colorimetría/métodos , Humanos , Glucosa/metabolismo , Glucosa/análisis , Glucemia/análisis , Glucemia/metabolismo , Ácidos Borónicos/química , Líquidos Corporales/química , Líquidos Corporales/metabolismo , Teléfono Inteligente , Automonitorización de la Glucosa Sanguínea/instrumentación , Automonitorización de la Glucosa Sanguínea/métodos , Lágrimas/química , Lágrimas/metabolismo
4.
Bone Res ; 12(1): 29, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744829

RESUMEN

Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.


Asunto(s)
Endosomas , Lisosomas , Osteoclastos , Animales , Femenino , Ratones , Resorción Ósea/metabolismo , Resorción Ósea/patología , Resorción Ósea/genética , Catepsina K/metabolismo , Catepsina K/genética , Diferenciación Celular , Endosomas/metabolismo , Eliminación de Gen , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7 , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA