Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 625(7996): 788-796, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029793

RESUMEN

The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.


Asunto(s)
Cerebelo , Evolución Molecular , Mamíferos , Neurogénesis , Animales , Humanos , Ratones , Linaje de la Célula/genética , Cerebelo/citología , Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Feto/citología , Feto/embriología , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Zarigüeyas/embriología , Zarigüeyas/crecimiento & desarrollo , Células de Purkinje/citología , Células de Purkinje/metabolismo , Análisis de Expresión Génica de una Sola Célula , Especificidad de la Especie , Transcriptoma , Mamíferos/embriología , Mamíferos/crecimiento & desarrollo
2.
Nature ; 613(7943): 308-316, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544022

RESUMEN

The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals1-6, probably owing to the evolutionary pressure on males to be reproductively successful7. However, the molecular evolution of individual spermatogenic cell types across mammals remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from 11 species that cover the three main mammalian lineages (eutherians, marsupials and monotremes) and birds (the evolutionary outgroup), and include seven primates. We find that the rapid evolution of the testis was driven by accelerated fixation rates of gene expression changes, amino acid substitutions and new genes in late spermatogenic stages, probably facilitated by reduced pleiotropic constraints, haploid selection and transcriptionally permissive chromatin. We identify temporal expression changes of individual genes across species and conserved expression programs controlling ancestral spermatogenic processes. Genes predominantly expressed in spermatogonia (germ cells fuelling spermatogenesis) and Sertoli (somatic support) cells accumulated on X chromosomes during evolution, presumably owing to male-beneficial selective forces. Further work identified transcriptomal differences between X- and Y-bearing spermatids and uncovered that meiotic sex-chromosome inactivation (MSCI) also occurs in monotremes and hence is common to mammalian sex-chromosome systems. Thus, the mechanism of meiotic silencing of unsynapsed chromatin, which underlies MSCI, is an ancestral mammalian feature. Our study illuminates the molecular evolution of spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals.


Asunto(s)
Evolución Molecular , Mamíferos , Espermatogénesis , Testículo , Animales , Masculino , Cromatina/genética , Mamíferos/genética , Meiosis/genética , Espermatogénesis/genética , Testículo/citología , Transcriptoma , Análisis de la Célula Individual , Aves/genética , Primates/genética , Regulación de la Expresión Génica , Espermatogonias/citología , Células de Sertoli/citología , Cromosoma X/genética , Cromosoma Y/genética , Compensación de Dosificación (Genética) , Silenciador del Gen
3.
J Biol Chem ; 297(6): 101381, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34748727

RESUMEN

Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor essential for neurocognitive development. The aberrations in TCF4 are associated with neurodevelopmental disorders including schizophrenia, intellectual disability, and Pitt-Hopkins syndrome, an autism-spectrum disorder characterized by developmental delay. Several disease-associated missense mutations in TCF4 have been shown to interfere with TCF4 function, but for many mutations, the impact remains undefined. Here, we tested the effects of 12 functionally uncharacterized disease-associated missense mutations and variations in TCF4 using transient expression in mammalian cells, confocal imaging, in vitro DNA-binding assays, and reporter assays. We show that Pitt-Hopkins syndrome-associated missense mutations within the basic helix-loop-helix domain of TCF4 and a Rett-like syndrome-associated mutation in a transcription activation domain result in altered DNA-binding and transcriptional activity of the protein. Some of the missense variations found in schizophrenia patients slightly increase TCF4 transcriptional activity, whereas no effects were detected for missense mutations linked to mild intellectual disability. We in addition find that the outcomes of several disease-related mutations are affected by cell type, TCF4 isoform, and dimerization partner, suggesting that the effects of TCF4 mutations are context-dependent. Together with previous work, this study provides a basis for the interpretation of the functional consequences of TCF4 missense variants.


Asunto(s)
Facies , Hiperventilación , Discapacidad Intelectual , Mutación Missense , Esquizofrenia , Factor de Transcripción 4 , Transcripción Genética , Sustitución de Aminoácidos , Animales , Células HEK293 , Secuencias Hélice-Asa-Hélice , Humanos , Hiperventilación/genética , Hiperventilación/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Ratas , Ratas Sprague-Dawley , Esquizofrenia/genética , Esquizofrenia/metabolismo , Factor de Transcripción 4/química , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
4.
J Neurosci ; 37(43): 10516-10527, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28951451

RESUMEN

Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Discapacidad Intelectual/metabolismo , Neuronas/metabolismo , Esquizofrenia/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Unión al ADN/genética , Femenino , Células HEK293 , Hipocampo/metabolismo , Humanos , Discapacidad Intelectual/genética , Masculino , Ratas , Ratas Sprague-Dawley , Esquizofrenia/genética , Factor de Transcripción 4 , Factores de Transcripción/genética
5.
Mol Cell Proteomics ; 15(6): 2055-75, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053602

RESUMEN

To study nucleolar involvement in brain development, the nuclear and nucleolar proteomes from the rat cerebral cortex at postnatal day 7 were analyzed using LC-MS/iTRAQ methodology. Data of the analysis are available via ProteomeXchange with identifier PXD002188. Among 504 candidate nucleolar proteins, the overrepresented gene ontology terms included such cellular compartmentcategories as "nucleolus", "ribosome" and "chromatin". Consistent with such classification, the most overrepresented functional gene ontology terms were related to RNA metabolism/ribosomal biogenesis, translation, and chromatin organization. Sixteen putative nucleolar proteins were associated with neurodevelopmental phenotypes in humans. Microcephaly and/or cognitive impairment were the most common phenotypic manifestations. Although several such proteins have links to ribosomal biogenesis and/or genomic stability/chromatin structure (e.g. EMG1, RPL10, DKC1, EIF4A3, FLNA, SMC1, ATRX, MCM4, NSD1, LMNA, or CUL4B), others including ADAR, LARP7, GTF2I, or TCF4 have no such connections known. Although neither the Alazami syndrome-associated LARP7nor the Pitt-Hopkins syndrome-associated TCF4 were reported in nucleoli of non-neural cells, in neurons, their nucleolar localization was confirmed by immunostaining. In cultured rat hippocampal neurons, knockdown of LARP7 reduced both perikaryal ribosome content and general protein synthesis. Similar anti-ribosomal/anti-translation effects were observed after knockdown of the ribosomal biogenesis factor EMG1 whose deficiency underlies Bowen-Conradi syndrome. Finally, moderate reduction of ribosome content and general protein synthesis followed overexpression of two Pitt-Hopkins syndrome mutant variants of TCF4. Therefore, dysregulation of ribosomal biogenesis and/or other functions of the nucleolus may disrupt neurodevelopment resulting in such phenotypes as microcephaly and/or cognitive impairment.


Asunto(s)
Nucléolo Celular/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Proteínas Nucleares/aislamiento & purificación , Proteómica/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/metabolismo , Femenino , Humanos , Modelos Animales , Mapas de Interacción de Proteínas , Ratas , Ratas Sprague-Dawley , Ribosomas/metabolismo
6.
J Biol Chem ; 289(47): 32845-57, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25271153

RESUMEN

Huntington disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an increased number of CAG repeats in the HTT gene coding for huntingtin. Decreased neurotrophic support and increased mitochondrial and excitotoxic stress have been reported in HD striatal and cortical neurons. The members of the class O forkhead (FOXO) transcription factor family, including FOXO3a, act as sensor proteins that are activated upon decreased survival signals and/or increased cellular stress. Using immunocytochemical screening in mouse striatal Hdh(7/7) (wild type), Hdh(7/109) (heterozygous for HD mutation), and Hdh(109/109) (homozygous for HD mutation) cells, we identified FOXO3a as a differentially regulated transcription factor in HD. We report increased nuclear FOXO3a levels in mutant Hdh cells. Additionally, we show that treatment with mitochondrial toxin 3-nitropropionic acid results in enhanced nuclear localization of FOXO3a in wild type Hdh(7/7) cells and in rat primary cortical neurons. Furthermore, mRNA levels of Foxo3a are increased in mutant Hdh cells compared with wild type cells and in 3-nitropropionic acid-treated primary neurons compared with untreated neurons. A similar increase was observed in the cortex of R6/2 mice and HD patient post-mortem caudate tissue compared with controls. Using chromatin immunoprecipitation and reporter assays, we demonstrate that FOXO3a regulates its own transcription by binding to the conserved response element in Foxo3a promoter. Altogether, the findings of this study suggest that FOXO3a levels are increased in HD cells as a result of overactive positive feedback loop.


Asunto(s)
Retroalimentación Fisiológica , Factores de Transcripción Forkhead/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Animales , Western Blotting , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Femenino , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Expresión Génica , Células HEK293 , Humanos , Enfermedad de Huntington/genética , Inmunohistoquímica , Masculino , Ratones Transgénicos , Microscopía Confocal , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrocompuestos/farmacología , Regiones Promotoras Genéticas/genética , Propionatos/farmacología , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
7.
Hum Mol Genet ; 21(13): 2873-88, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22460224

RESUMEN

Transcription factor TCF4 (alias ITF2, SEF2 or E2-2) is a broadly expressed basic helix-loop-helix (bHLH) protein that functions as a homo- or heterodimer. Missense, nonsense, frame-shift and splice-site mutations as well as translocations and large deletions encompassing TCF4 gene cause Pitt-Hopkins syndrome (PTHS), a rare developmental disorder characterized by severe motor and mental retardation, typical facial features and breathing anomalies. Irrespective of the mutation, TCF4 haploinsufficiency has been proposed as an underlying mechanism for PTHS. We have recently demonstrated that human TCF4 gene is transcribed using numerous 5' exons. Here, we re-evaluated the impact of all the published PTHS-associated mutations, taking into account the diversity of TCF4 isoforms, and assessed how the reading frame elongating and missense mutations affect TCF4 functions. Our analysis revealed that not all deletions and truncating mutations in TCF4 result in complete loss-of-function and the impact of reading frame elongating and missense mutations ranges from subtle deficiencies to dominant-negative effects. We show that (i) missense mutations in TCF4 bHLH domain and the reading frame elongating mutation damage DNA-binding and transactivation ability in a manner dependent on dimer context (homodimer versus heterodimer with ASCL1 or NEUROD2); (ii) the elongating mutation and the missense mutation at the dimer interface of the HLH domain destabilize the protein; and (iii) missense mutations outside of the bHLH domain cause no major functional deficiencies. We conclude that different PTHS-associated mutations impair the functions of TCF4 by diverse mechanisms and to a varying extent, possibly contributing to the phenotypic variability of PTHS patients.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Hiperventilación/genética , Discapacidad Intelectual/genética , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Línea Celular , Cromatina , Mapeo Cromosómico , Facies , Variación Genética , Células HEK293 , Haploinsuficiencia , Humanos , Fenotipo , Estructura Secundaria de Proteína , Factor de Transcripción 4 , Factores de Transcripción/química , Transcripción Genética , Activación Transcripcional
8.
BMC Neurosci ; 15: 75, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24943717

RESUMEN

BACKGROUND: Brain derived neurotrophic factor (BDNF) belongs to a family of structurally related proteins called neurotrophins that have been shown to regulate survival and growth of neurons in the developing central and peripheral nervous system and also to take part in synaptic plasticity related processes in adulthood. Since BDNF is associated with several nervous system disorders it would be beneficial to have cellular reporter system for studying its expression regulation. METHODS: Using modified bacterial artificial chromosome (BAC), we generated several transgenic cell lines expressing humanised Renilla luciferase (hRluc)-EGFP fusion reporter gene under the control of rat BDNF gene regulatory sequences (rBDNF-hRluc-EGFP) in HeLa background. To see if the hRluc-EGFP reporter was regulated in response to known regulators of BDNF expression we treated cell lines with substances known to regulate BDNF and also overexpressed transcription factors known to regulate BDNF gene in established cell lines. RESULTS: rBDNF-hRluc-EGFP cell lines had high transgene copy numbers when assayed with qPCR and FISH analysis showed that transgene was maintained episomally in all cell lines. Luciferase activity in transgenic cell lines was induced in response to ionomycin-mediated rise of intracellular calcium levels, treatment with HDAC inhibitors and by over-expression of transcription factors known to increase BDNF expression, indicating that transcription of the transgenic reporter is regulated similarly to the endogenous BDNF gene. CONCLUSIONS: Generated rBDNF-hRluc-EGFP BAC cell lines respond to known modulators of BDNF expression and could be used for screening of compounds/small molecules or transcription factors altering BDNF expression.


Asunto(s)
Bioensayo/métodos , Factor Neurotrófico Derivado del Encéfalo/genética , Cromosomas Artificiales Bacterianos/genética , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/farmacología , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Células HeLa , Humanos
9.
Nat Ecol Evol ; 7(10): 1714-1728, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37710042

RESUMEN

The vertebrate brain emerged more than ~500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey-a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits-based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of cell types, tissue structures and gene expression programs of the ancestral vertebrate brain. However, our analyses also revealed key tissues and cell types that arose later in evolution. For example, the ancestral brain was probably devoid of cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter emerged from astrocyte-like evolutionary precursors in the jawed vertebrate lineage. Altogether, our work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and provides a foundation for exploring its diversification during evolution.


Asunto(s)
Petromyzon , Vertebrados , Animales , Ratones , Filogenia , Vertebrados/genética , Petromyzon/genética , Cabeza , Encéfalo
10.
Neuro Oncol ; 25(10): 1895-1909, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37534924

RESUMEN

BACKGROUND: Distinguishing the cellular origins of childhood brain tumors is key for understanding tumor initiation and identifying lineage-restricted, tumor-specific therapeutic targets. Previous strategies to map the cell-of-origin typically involved comparing human tumors to murine embryonal tissues, which is potentially limited due to species-specific differences. The aim of this study was to unravel the cellular origins of the 3 most common pediatric brain tumors, ependymoma, pilocytic astrocytoma, and medulloblastoma, using a developing human cerebellar atlas. METHODS: We used a single-nucleus atlas of the normal developing human cerebellum consisting of 176 645 cells as a reference for an in-depth comparison to 4416 bulk and single-cell transcriptome tumor datasets, using gene set variation analysis, correlation, and single-cell matching techniques. RESULTS: We find that the astroglial cerebellar lineage is potentially the origin for posterior fossa ependymomas. We propose that infratentorial pilocytic astrocytomas originate from the oligodendrocyte lineage and MHC II genes are specifically enriched in these tumors. We confirm that SHH and Group 3/4 medulloblastomas originate from the granule cell and unipolar brush cell lineages. Radiation-induced gliomas stem from cerebellar glial lineages and demonstrate distinct origins from the primary medulloblastoma. We identify tumor genes that are expressed in the cerebellar lineage of origin, and genes that are tumor specific; both gene sets represent promising therapeutic targets for future study. CONCLUSION: Based on our results, individual cells within a tumor may resemble different cell types along a restricted developmental lineage. Therefore, we suggest that tumors can arise from multiple cellular states along the cerebellar "lineage of origin."


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias Cerebelosas , Ependimoma , Glioma , Meduloblastoma , Niño , Humanos , Animales , Ratones , Meduloblastoma/genética , Meduloblastoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/patología , Astrocitoma/genética , Ependimoma/genética , Ependimoma/patología , Cerebelo/patología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología
11.
J Neurosci ; 31(9): 3295-308, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21368041

RESUMEN

Brain-derived neurotrophic factor (BDNF) is an important mediator of activity-dependent functions of the nervous system and its expression is dysregulated in several neuropsychiatric disorders. Regulation of rodent BDNF neuronal activity-dependent transcription has been relatively well characterized. Here, we have studied regulation of human BDNF (hBDNF) transcription by membrane depolarization of cultured mouse or rat primary cortical neurons expressing hBDNF gene or transfected with hBDNF promoter constructs, respectively. We identified an asymmetric E-box-like element, PasRE [basic helix-loop-helix (bHLH)-PAS transcription factor response element], in hBDNF promoter I and demonstrate that binding of this element by bHLH-PAS transcription factors ARNT2 (aryl hydrocarbon receptor nuclear translocator 2) and NPAS4 (neuronal PAS domain protein 4) is crucial for neuronal activity-dependent transcription from promoter I. We show that binding of CREB (cAMP response element-binding protein) to the cAMP/Ca(2+)-response element (CRE) in hBDNF promoter IV is critical for activity-dependent transcription from this promoter and that upstream stimulatory factor (USF) transcription factors also contribute to the activation by binding to the upstream stimulatory factor binding element (UBE) in hBDNF promoter IV. However, we report that full induction of hBDNF exon IV mRNA transcription is dependent on ARNT2 and NPAS4 binding to a PasRE in promoter IV. Finally, we demonstrate that CRE and PasRE elements in hBDNF promoter IX are required for the induction of this promoter by neuronal activity. Together, the results of this study have identified the cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Elementos de Facilitación Genéticos/genética , Neuronas/fisiología , Factores de Transcripción/fisiología , Activación Transcripcional/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/fisiología , Señalización del Calcio/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Polaridad Celular/genética , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/genética
12.
Science ; 373(6558)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34446581

RESUMEN

Organ development is orchestrated by cell- and time-specific gene regulatory networks. In this study, we investigated the regulatory basis of mouse cerebellum development from early neurogenesis to adulthood. By acquiring snATAC-seq (single-nucleus assay for transposase accessible chromatin using sequencing) profiles for ~90,000 cells spanning 11 stages, we mapped cerebellar cell types and identified candidate cis-regulatory elements (CREs). We detected extensive spatiotemporal heterogeneity among progenitor cells and a gradual divergence in the regulatory programs of cerebellar neurons during differentiation. Comparisons to vertebrate genomes and snATAC-seq profiles for ∼20,000 cerebellar cells from the marsupial opossum revealed a shared decrease in CRE conservation during development and differentiation as well as differences in constraint between cell types. Our work delineates the developmental and evolutionary dynamics of gene regulation in cerebellar cells and provides insights into mammalian organ development.


Asunto(s)
Evolución Biológica , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Neuronas/fisiología , Elementos Reguladores de la Transcripción , Animales , Cerebelo/embriología , Cromatina/genética , Cromatina/metabolismo , ADN Intergénico , Femenino , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neurogénesis , Zarigüeyas/genética
13.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34518368

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder with onset of characteristic motor symptoms at midlife, preceded by subtle cognitive and behavioral disturbances. Transcriptional dysregulation emerges early in the disease course and is considered central to HD pathogenesis. Using wild-type (wt) and HD knock-in mouse striatal cell lines we observed a HD genotype-dependent reduction in the protein levels of transcription factor 4 (TCF4), a member of the basic helix-loop-helix (bHLH) family with critical roles in brain development and function. We characterized mouse Tcf4 gene structure and expression of alternative mRNAs and protein isoforms in cell-based models of HD, and in four different brain regions of male transgenic HD mice (R6/1) from young to mature adulthood. The largest decrease in the levels of TCF4 at mRNA and specific protein isoforms were detected in the R6/1 mouse hippocampus. Translating this finding to human disease, we found reduced expression of long TCF4 isoforms in the postmortem hippocampal CA1 area and in the cerebral cortex of HD patients. Additionally, TCF4 protein isoforms showed differential synergism with the proneural transcription factor ASCL1 in activating reporter gene transcription in hippocampal and cortical cultured neurons. Induction of neuronal activity increased these synergistic effects in hippocampal but not in cortical neurons, suggesting brain region-dependent differences in TCF4 functions. Collectively, this study demonstrates isoform-specific changes in TCF4 expression in HD that could contribute to the progressive impairment of transcriptional regulation and neuronal function in this disease.


Asunto(s)
Enfermedad de Huntington , Adulto , Animales , Modelos Animales de Enfermedad , Hipocampo , Humanos , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Neuronas , Isoformas de Proteínas , Factor de Transcripción 4/genética
14.
Genesis ; 48(4): 214-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20186743

RESUMEN

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of neurotrophic factors, has important functions in the peripheral and central nervous system of vertebrates. We have generated bacterial artificial chromosome (BAC) transgenic mice harboring 207 kb of the rat BDNF (rBDNF) locus containing the gene, 13 kb of genomic sequences upstream of BDNF exon I, and 144 kb downstream of protein encoding exon IX, in which protein coding region was replaced with the lacZ reporter gene. This BDNF-BAC drove transgene expression in the brain, heart, and lung, recapitulating endogenous BDNF expression to a larger extent than shorter rat BDNF transgenes employed previously. Moreover, kainic acid induced the expression of the transgenic BDNF mRNA in the cerebral cortex and hippocampus through preferential activation of promoters I and IV, thus recapitulating neuronal activity-dependent transcription of the endogenous BDNF gene.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Cromosomas Artificiales Bacterianos/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/fisiología , Transgenes , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Corteza Cerebral/metabolismo , Cromosomas Artificiales Bacterianos/genética , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/metabolismo , Ácido Kaínico/farmacología , Ratones , Ratones Transgénicos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Ratas
15.
Sci Rep ; 10(1): 18424, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116252

RESUMEN

The CTG trinucleotide repeat (TNR) expansion in Transcription factor 4 (TCF4) intron 3 is the main cause of Fuchs' endothelial corneal dystrophy (FECD) and may confer an increased risk of developing bipolar disorder (BD). Usage of alternative 5' exons for transcribing the human TCF4 gene results in numerous TCF4 transcripts which encode for at least 18 N-terminally different protein isoforms that vary in their function and transactivation capability. Here we studied the TCF4 region containing the CTG TNR and characterized the transcription initiation sites of the nearby downstream 5' exons 4a, 4b and 4c. We demonstrate that these exons are linked to alternative promoters and show that the CTG TNR expansion decreases the activity of the nearby downstream TCF4 promoters in primary cultured neurons. We confirm this finding using two RNA sequencing (RNA-seq) datasets of corneal endothelium from FECD patients with expanded CTG TNR in the TCF4 gene. Furthermore, we report an increase in the expression of various other TCF4 transcripts in FECD, possibly indicating a compensatory mechanism. We conclude that the CTG TNR affects TCF4 expression in a transcript-specific manner both in neurons and in the cornea.


Asunto(s)
Distrofia Endotelial de Fuchs/genética , Factor de Transcripción 4/genética , Empalme Alternativo , Humanos , Regiones Promotoras Genéticas , Factor de Transcripción 4/metabolismo , Expansión de Repetición de Trinucleótido
16.
Dis Model Mech ; 13(7)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32641419

RESUMEN

Mammalian transcription factor 4 (TCF4) has been linked to schizophrenia and intellectual disabilities, such as Pitt-Hopkins syndrome (PTHS). Here, we show that similarly to mammalian TCF4, fruit fly orthologue Daughterless (Da) is expressed widely in the Drosophila brain. Furthermore, silencing of da, using several central nervous system-specific Gal4 driver lines, impairs appetitive associative learning of the larvae and leads to decreased levels of the synaptic proteins Synapsin (Syn) and Discs large 1 (Dlg1), suggesting the involvement of Da in memory formation. Here, we demonstrate that Syn and dlg1 are direct target genes of Da in adult Drosophila heads, as Da binds to the regulatory regions of these genes and the modulation of Da levels alter the levels of Syn and dlg1 mRNA. Silencing of da also affects negative geotaxis of the adult flies, suggesting the impairment of locomotor function. Overall, our findings suggest that Da regulates Drosophila larval memory and adult negative geotaxis, possibly via its synaptic target genes Syn and dlg1 These behavioural phenotypes can be further used as a PTHS model to screen for therapeutics.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Aprendizaje por Asociación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Conducta Animal , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hiperventilación/metabolismo , Discapacidad Intelectual/metabolismo , Neuronas/metabolismo , Proteoma , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Encéfalo/embriología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Facies , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Hiperventilación/genética , Hiperventilación/fisiopatología , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Larva/genética , Larva/metabolismo , Actividad Motora , Transducción de Señal , Sinapsis/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
17.
J Neurochem ; 109(3): 807-18, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19245665

RESUMEN

The SWItch/Sucrose NonFermentable, a nucleosome remodeling complex (SWI/SNF) chromatin-remodelling complexes act upon the nucleosomal structure and regulate transcription, replication, repair of chromatin and splicing. In this study, we present evidence that human, mouse and rat genes encoding one of the SWI/SNF complex subunits, BAF57, undergo neuron-specific splicing of exons II, III and IV. Alternative splicing yields in at least three isoforms of BAF57 protein that have truncated N-termini (N-BAF57s). The transcripts encoding N-BAF57 isoforms are predominantly expressed in the nervous system. The biochemical fractionation data supported by the results of the co-immunoprecipitation analysis show that N-BAF57 isoforms associate into protein complexes together with Brg1, Brm, BAF155 and BAF170. Transient over-expression of N-BAF57 isoforms in non-neural cells affects the level of expression of certain neuron-restrictive silencer element-containing genes. Together these data suggest that neuronal isoforms of BAF57 contribute to functional SWI/SNF complexes regulating neurogenesis.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Empalme Alternativo , Animales , Encéfalo/citología , Células Cultivadas , ADN Helicasas/metabolismo , Embrión de Mamíferos , Regulación de la Expresión Génica/fisiología , Humanos , Inmunoprecipitación/métodos , Melanoma , Ratones , Neuroblastoma , Neuronas/ultraestructura , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos , Isoformas de Proteínas , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares/metabolismo , Factores de Transcripción/genética , Transfección
18.
Eur J Neurosci ; 30(6): 958-66, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19735291

RESUMEN

X chromosome-linked inhibitor of apoptosis protein (XIAP) is an anti-apoptotic protein enhancing cell survival. Brain-derived neurotrophic factor (BDNF) also promotes neuronal viability but the links between XIAP and BDNF have remained unclear. We show here that the overexpression of XIAP increases BDNF in transgenic mice and cultured rat hippocampal neurons, whereas downregulation of XIAP by silencing RNA decreased BDNF. XIAP also stimulated BDNF signaling, as shown by increased phosphorylation of the TrkB receptor and the downstream molecule, cAMP response element-binding protein. The mechanism involved nuclear factor-kappaB (NF-kappaB) activation and blocking of NF-kappaB signaling inhibited the increased activities of BDNF promoters I and IV by XIAP. In neuronal cultures XIAP also upregulated interleukin (IL)-6, which is an NF-kappaB-responsive gene. The addition of IL-6 elevated whereas incubation with IL-6-blocking antibodies reduced BDNF in the neurons. BDNF itself activated NF-kappaB in the neurons at higher concentrations. The data show that XIAP has trophic effects on hippocampal neurons by increasing BDNF and TrkB activity. The results reveal a cytokine network in the brain involving BDNF, IL-6 and XIAP interconnected via the NF-kappaB system.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Análisis de Varianza , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/genética , Células Cultivadas , Silenciador del Gen , Hipocampo/citología , Interleucina-6/metabolismo , Ratones , Ratones Transgénicos , Red Nerviosa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Receptor trkB/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Regulación hacia Arriba , Proteína Inhibidora de la Apoptosis Ligada a X/genética
19.
Biochem Biophys Res Commun ; 389(3): 420-5, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19723503

RESUMEN

Delta-Notch signaling is a universal cell-cell communication pathway crucial for numerous developmental and physiological processes. Several proteins interact with and regulate the Notch pathway, including the E3 ubiquitin ligase Neuralized (Neur) that influences the stability and activity of Notch ligands. In mammals there are two homologs of Neur, Neur1 and Neur2, that both can interact with Notch ligands Delta-like1 and Jagged1. Here, we show that Neur2, in contrast to Neur1, is highly expressed during embryonic development of the brain and several non-neural tissues and its mRNA levels subside postnatally. In the hippocampal neurons of the adult brain Neur2 transcripts, in contrast to Neur1, are excluded from the dendrites. Neur2 protein has a predominantly cytoplasmic localization. We also show that in addition to Delta-like1, Neur1 and Neur2 interact with another Notch ligand, Delta-like4.


Asunto(s)
Encéfalo/embriología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Encéfalo/enzimología , Proteínas de Unión al Calcio , Hipocampo/citología , Hipocampo/embriología , Hipocampo/enzimología , Humanos , Ligandos , Ratones , Proteínas Musculares/genética , Neuronas/enzimología , Ratas , Transcripción Genética , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitina-Proteína Ligasas/genética
20.
BMC Neurosci ; 10: 68, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19555478

RESUMEN

BACKGROUND: Brain-derived neurotrophic factor (BDNF) is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC) transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression. RESULTS: In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein (EGFP). The human BDNF-BAC construct containing all BDNF 5' exons preceded by different promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts were expressed from the transgenic human BDNF-BAC construct, resembling the expression of endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA. CONCLUSION: Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar to BDNF gene expression in mouse and human. This is the first study to show that human BDNF gene is regulated by neural activity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/citología , Regulación de la Expresión Génica/genética , Neuronas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cromosomas Artificiales Bacterianos , Agonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Humanos , Ácido Kaínico/farmacología , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA