Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Mol Cell Cardiol ; 133: 174-187, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31220468

RESUMEN

The mammalian heart undergoes complex structural and functional remodeling to compensate for stresses such as pressure overload. While studies suggest that, at best, the adult mammalian heart is capable of very limited regeneration arising from the proliferation of existing cardiomyocytes, how myocardial stress affects endogenous cardiac regeneration or repair is unknown. To define the relationship between left ventricular afterload and cardiac repair, we induced left ventricle pressure overload in adult mice by constriction of the ascending aorta (AAC). One week following AAC, we normalized ventricular afterload in a subset of animals through removal of the aortic constriction (de-AAC). Subsequent monitoring of cardiomyocyte cell cycle activity via thymidine analog labeling revealed that an acute increase in ventricular afterload induced cardiomyocyte proliferation. Intriguingly, a release in ventricular overload (de-AAC) further increases cardiomyocyte proliferation. Following both AAC and de-AAC, thymidine analog-positive cardiomyocytes exhibited characteristics of newly generated cardiomyocytes, including single diploid nuclei and reduced cell size as compared to age-matched, sham-operated adult mouse myocytes. Notably, those smaller cardiomyocytes frequently resided alongside one another, consistent with local stimulation of cellular proliferation. Collectively, our data demonstrate that adult cardiomyocyte proliferation can be locally stimulated by an acute increase or decrease of ventricular pressure, and this mode of stimulation can be harnessed to promote cardiac repair.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Presión Ventricular , Remodelación Ventricular , Animales , Biomarcadores , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Proliferación Celular , Modelos Animales de Enfermedad , Ecocardiografía , Técnica del Anticuerpo Fluorescente , Expresión Génica , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo
2.
Circ Res ; 117(5): 450-9, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26082557

RESUMEN

RATIONALE: In response to injury, the rodent heart is capable of virtually full regeneration via cardiomyocyte proliferation early in life. This regenerative capacity, however, is diminished as early as 1 week postnatal and remains lost in adulthood. The mechanisms that dictate postinjury cardiomyocyte proliferation early in life remain unclear. OBJECTIVE: To delineate the role of miR-34a, a regulator of age-associated physiology, in regulating cardiac regeneration secondary to myocardial infarction (MI) in neonatal and adult mouse hearts. METHODS AND RESULTS: Cardiac injury was induced in neonatal and adult hearts through experimental MI via coronary ligation. Adult hearts demonstrated overt cardiac structural and functional remodeling, whereas neonatal hearts maintained full regenerative capacity and cardiomyocyte proliferation and recovered to normal levels within 1-week time. As early as 1 week postnatal, miR-34a expression was found to have increased and was maintained at high levels throughout the lifespan. Intriguingly, 7 days after MI, miR-34a levels further increased in the adult but not neonatal hearts. Delivery of a miR-34a mimic to neonatal hearts prohibited both cardiomyocyte proliferation and subsequent cardiac recovery post MI. Conversely, locked nucleic acid-based anti-miR-34a treatment diminished post-MI miR-34a upregulation in adult hearts and significantly improved post-MI remodeling. In isolated cardiomyocytes, we found that miR-34a directly regulated cell cycle activity and death via modulation of its targets, including Bcl2, Cyclin D1, and Sirt1. CONCLUSIONS: miR-34a is a critical regulator of cardiac repair and regeneration post MI in neonatal hearts. Modulation of miR-34a may be harnessed for cardiac repair in adult myocardium.


Asunto(s)
Corazón/fisiología , MicroARNs/fisiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Regeneración/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Embarazo
3.
J Cell Mol Med ; 19(8): 1757-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26119413

RESUMEN

Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found to be short-lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac 'progenitor' cells as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resident cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demonstrated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size. Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the optimal cell types and delivery conditions for therapeutic effect.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Miocardio/patología , Investigación Biomédica Traslacional , Humanos , Isquemia Miocárdica/patología , Isquemia Miocárdica/terapia
4.
Circ Res ; 112(1): 27-34, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23136123

RESUMEN

RATIONALE: After cardiac injury, cardiac progenitor cells are acutely reduced and are replenished in part by regulated self-renewal and proliferation, which occurs through symmetric and asymmetric cellular division. Understanding the molecular cues controlling progenitor cell self-renewal and lineage commitment is critical for harnessing these cells for therapeutic regeneration. We previously have found that the cell surface ATP-binding cassette G-subfamily transporter 2 (Abcg2) influences the proliferation of cardiac side population (CSP) progenitor cells, but through unclear mechanisms. OBJECTIVE: To determine the role of Abcg2 on cell cycle progression and mode of division in mouse CSP cells. METHODS AND RESULTS: Herein, using CSP cells isolated from wild-type and Abcg2 knockout mice, we found that Abcg2 regulates G1-S cell cycle transition by fluorescence ubiquitination cell cycle indicators, cell cycle-focused gene expression arrays, and confocal live-cell fluorescent microscopy. Moreover, we found that modulation of cell cycle results in transition from symmetric to asymmetric cellular division in CSP cells lacking Abcg2. CONCLUSIONS: Abcg2 modulates CSP cell cycle progression and asymmetric cell division, establishing a mechanistic link between this surface transporter and cardiac progenitor cell function. Greater understanding of progenitor cell biology and, in particular, the regulation of resident progenitor cell homeostasis is vital for guiding the future development of cell-based therapies for cardiac regeneration.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , División Celular Asimétrica , Puntos de Control del Ciclo Celular , Miocardio/metabolismo , Células de Población Lateral/metabolismo , Transducción de Señal , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/deficiencia , Transportadoras de Casetes de Unión a ATP/genética , Animales , División Celular Asimétrica/genética , Puntos de Control del Ciclo Celular/genética , Células Cultivadas , Citometría de Flujo , Puntos de Control de la Fase G1 del Ciclo Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros , Cinética , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Microscopía por Video , Miocardio/citología , Interferencia de ARN , Transducción de Señal/genética , Imagen de Lapso de Tiempo , Transfección
5.
Circ Res ; 109(12): 1363-74, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22034491

RESUMEN

RATIONALE: Recent work in animal models and humans has demonstrated the presence of organ-specific progenitor cells required for the regenerative capacity of the adult heart. In response to tissue injury, progenitor cells differentiate into specialized cells, while their numbers are maintained through mechanisms of self-renewal. The molecular cues that dictate the self-renewal of adult progenitor cells in the heart, however, remain unclear. OBJECTIVE: We investigate the role of canonical Wnt signaling on adult cardiac side population (CSP) cells under physiological and disease conditions. METHODS AND RESULTS: CSP cells isolated from C57BL/6J mice were used to study the effects of canonical Wnt signaling on their proliferative capacity. The proliferative capacity of CSP cells was also tested after injection of recombinant Wnt3a protein (r-Wnt3a) in the left ventricular free wall. Wnt signaling was found to decrease the proliferation of adult CSP cells, both in vitro and in vivo, through suppression of cell cycle progression. Wnt stimulation exerted its antiproliferative effects through a previously unappreciated activation of insulin-like growth factor binding protein 3 (IGFBP3), which requires intact IGF binding site for its action. Moreover, injection of r-Wnt3a after myocardial infarction in mice showed that Wnt signaling limits CSP cell renewal, blocks endogenous cardiac regeneration and impairs cardiac performance, highlighting the importance of progenitor cells in maintaining tissue function after injury. CONCLUSIONS: Our study identifies canonical Wnt signaling and the novel downstream mediator, IGFBP3, as key regulators of adult cardiac progenitor self-renewal in physiological and pathological states.


Asunto(s)
Proliferación Celular , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Miocitos Cardíacos/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología , Proteínas Wnt/fisiología , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Proliferación Celular/efectos de los fármacos , Femenino , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Homeostasis/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Células Madre/citología , Proteína Wnt3A/farmacología
6.
Circ Res ; 103(8): 825-35, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18787193

RESUMEN

Recently, the side population (SP) phenotype has been introduced as a reliable marker to identify subpopulations of cells with stem/progenitor cell properties in various tissues. We and others have identified SP cells from postmitotic tissues, including adult myocardium, in which they have been suggested to contribute to cellular regeneration following injury. SP cells are identified and characterized by a unique efflux of Hoechst 33342 dye. Abcg2 belongs to the ATP-binding cassette (ABC) transporter superfamily and constitutes the molecular basis for the dye efflux, hence the SP phenotype, in hematopoietic stem cells. Although Abcg2 is also expressed in cardiac SP (cSP) cells, its role in regulating the SP phenotype and function of cSP cells is unknown. Herein, we demonstrate that regulation of the SP phenotype in cSP cells occurs in a dynamic, age-dependent fashion, with Abcg2 as the molecular determinant of the cSP phenotype in the neonatal heart and another ABC transporter, Mdr1, as the main contributor to the SP phenotype in the adult heart. Using loss- and gain-of-function experiments, we find that Abcg2 tightly regulates cell fate and function. Adult cSP cells isolated from mice with genetic ablation of Abcg2 exhibit blunted proliferation capacity and augmented cell death. Conversely, overexpression of Abcg2 is sufficient to enhance cell proliferation, although with a limitation of cardiomyogenic differentiation. In summary, for the first time, we reveal a functional role for Abcg2 in modulating the proliferation, differentiation, and survival of adult cSP cells that goes beyond its distinct role in Hoechst dye efflux.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Miocardio/metabolismo , Células Madre/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Factores de Edad , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Bencimidazoles/metabolismo , Muerte Celular , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Colorantes Fluorescentes/metabolismo , Masculino , Ratones , Ratones Noqueados , Miocardio/citología , Fenotipo , Transducción Genética , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
7.
Nat Commun ; 9(1): 754, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467410

RESUMEN

The cellular mechanisms driving cardiac tissue formation remain poorly understood, largely due to the structural and functional complexity of the heart. It is unclear whether newly generated myocytes originate from cardiac stem/progenitor cells or from pre-existing cardiomyocytes that re-enter the cell cycle. Here, we identify the source of new cardiomyocytes during mouse development and after injury. Our findings suggest that cardiac progenitors maintain proliferative potential and are the main source of cardiomyocytes during development; however, the onset of αMHC expression leads to reduced cycling capacity. Single-cell RNA sequencing reveals a proliferative, "progenitor-like" population abundant in early embryonic stages that decreases to minimal levels postnatally. Furthermore, cardiac injury by ligation of the left anterior descending artery was found to activate cardiomyocyte proliferation in neonatal but not adult mice. Our data suggest that clonal dominance of differentiating progenitors mediates cardiac development, while a distinct subpopulation of cardiomyocytes may have the potential for limited proliferation during late embryonic development and shortly after birth.


Asunto(s)
Lesiones Cardíacas/patología , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Madre Embrionarias/citología , Femenino , Corazón Fetal/citología , Corazón Fetal/crecimiento & desarrollo , Lesiones Cardíacas/genética , Masculino , Ratones , Ratones Transgénicos , Mioblastos Cardíacos/citología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Pericardio/citología , Pericardio/embriología , Pericardio/crecimiento & desarrollo , Embarazo , Análisis de Secuencia de ARN
8.
Sci Rep ; 6: 22489, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26935567

RESUMEN

Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Miocardio/citología , Miocardio/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Doxorrubicina/farmacología , Ratones , Microscopía Fluorescente/métodos
9.
Methods Mol Biol ; 1036: 95-106, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23807790

RESUMEN

Investigation of cardiac progenitor cell proliferation and differentiation is essential for both the basic understanding of progenitor cell biology as well as the development of cellular therapeutics for tissue regeneration. Herein, we describe techniques used for the analysis of CSP cell proliferation, cell cycle status, and cardiomyogenic differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Separación Celular/métodos , Miocitos Cardíacos/citología , Células de Población Lateral/citología , Células Madre/citología , Animales , Animales Recién Nacidos , Ciclo Celular , Células Cultivadas , Citometría de Flujo , Miocitos Cardíacos/metabolismo , Ratas , Células de Población Lateral/metabolismo , Células Madre/metabolismo
10.
J Vis Exp ; (80)2013 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-24145664

RESUMEN

Parabiosis is a surgical union of two organisms allowing sharing of the blood circulation. Attaching the skin of two animals promotes formation of microvasculature at the site of inflammation. Parabiotic partners share their circulating antigens and thus are free of adverse immune reaction. First described by Paul Bert in 1864(1), the parabiosis surgery was refined by Bunster and Meyer in 1933 to improve animal survival(2). In the current protocol, two mice are surgically joined following a modification of the Bunster and Meyer technique. Animals are connected through the elbow and knee joints followed by attachment of the skin allowing firm support that prevents strain on the sutured skin. Herein, we describe in detail the parabiotic joining of a ubiquitous GFP expressing mouse to a wild type (WT) mouse. Two weeks after the procedure, the pair is separated and GFP positive cells can be detected by flow cytometric analysis in the blood circulation of the WT mouse. The blood chimerism allows one to examine the contribution of the circulating cells from one animal in the other.


Asunto(s)
Ratones/cirugía , Parabiosis/métodos , Animales , Femenino , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones Transgénicos
11.
Dev Cell ; 27(4): 373-86, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24286824

RESUMEN

The placenta provides the interface for gas and nutrient exchange between the mother and the fetus. Despite its critical function in sustaining pregnancy, the stem/progenitor cell hierarchy and molecular mechanisms responsible for the development of the placental exchange interface are poorly understood. We identified an Epcam(hi) labyrinth trophoblast progenitor (LaTP) in mouse placenta that at a clonal level generates all labyrinth trophoblast subtypes, syncytiotrophoblasts I and II, and sinusoidal trophoblast giant cells. Moreover, we discovered that hepatocyte growth factor/c-Met signaling is required for sustaining proliferation of LaTP during midgestation. Loss of trophoblast c-Met also disrupted terminal differentiation and polarization of syncytiotrophoblasts, leading to intrauterine fetal growth restriction, fetal liver hypocellularity, and demise. Identification of this c-Met-dependent multipotent LaTP provides a landmark in the poorly defined placental stem/progenitor cell hierarchy and may help us understand pregnancy complications caused by a defective placental exchange.


Asunto(s)
Oído Interno/citología , Retardo del Crecimiento Fetal/patología , Intercambio Materno-Fetal , Placenta/citología , Proteínas Proto-Oncogénicas c-met/metabolismo , Células Madre/citología , Trofoblastos/citología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Oído Interno/metabolismo , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo , Hígado/patología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Placenta/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Trofoblastos/metabolismo
12.
Methods Mol Biol ; 660: 53-63, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20680812

RESUMEN

Cardiac resident stem/progenitor cells are critical to the cellular and functional integrity of the heart by maintaining myocardial cell homeostasis. Given their central role in myocardial biology, resident cardiac progenitor cells have become a major focus in cardiovascular research. Identification of putative cardiac progenitor cells within the myocardium is largely based on the presence or absence of specific cell surface markers. Additional purification strategies take advantage of the ability of stem cells to efficiently efflux vital dyes such as Hoechst 33342. During fluoresence activated cell sorting (FACS) such Hoechst-extruding cells appear to the side of Hoechst-dye retaining cells and have thus been termed side population (SP) cells. We have shown that cardiac SP cells that express stem cell antigen 1 (Sca-1) but not CD31 are cardiomyogenic, and thus represent a putative cardiac progenitor cell population. This chapter describes the methodology for the isolation of resident cardiac progenitor cells utilizing the SP phenotype combined with stem cell surface markers.


Asunto(s)
Bencimidazoles/química , Miocitos Cardíacos/citología , Células Madre/citología , Animales , Células Cultivadas , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA