Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 281: 111890, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385906

RESUMEN

A pilot-scale microalgae (Chlorella spp.) and primary sludge anaerobic co-digestion (ACoD) plant was run for one year in an anaerobic membrane bioreactor (AnMBR) at 35 °C, 70 d solids retention time and 30 d hydraulic retention time, showing high stability in terms of pH and VFA concentration. The plant achieved a high degree of microalgae and primary sludge substrate degradation, resulting in a methane yield of 370 mLCH4·gVSinf-1. Nutrient-rich effluent streams (685 mgN·L-1 and 145 mgP·L-1 in digestate and 395 mgNH4-N·L-1 and 37 mgPO4-P·L-1 in permeate) were obtained, allowing posterior nutrient recovery. Ammonium was recovered from the permeate as ammonia sulphate through a hydrophobic polypropylene hollow fibre membrane contactor, achieving 99% nitrogen recovery efficiency. However, phosphorus recovery through processes such as struvite precipitation was not applied since only 26% of the phosphate was available in the effluent. Composting process of the digestate coming from the ACoD pilot plant was assessed on laboratory-scale Dewar reactors, as was the conventional sludge compost from an industrial WWTP digestion process, obtaining similar values from both. Sanitised (free of Escherichia coli and Salmonella spp.) and stable compost (respirometric index at 37 °C below 0.5 mgO 2 g organic matter-1·h-1) was obtained from both sludges.


Asunto(s)
Chlorella , Compostaje , Microalgas , Anaerobiosis , Reactores Biológicos , Digestión , Metano , Aguas del Alcantarillado , Aguas Residuales
2.
Water Sci Technol ; 78(9): 1925-1936, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30566096

RESUMEN

This research work proposes an innovative water resource recovery facility (WRRF) for the recovery of energy, nutrients and reclaimed water from sewage, which represents a promising approach towards enhanced circular economy scenarios. To this aim, anaerobic technology, microalgae cultivation, and membrane technology were combined in a dedicated platform. The proposed platform produces a high-quality solid- and coliform-free effluent that can be directly discharged to receiving water bodies identified as sensitive areas. Specifically, the content of organic matter, nitrogen and phosphorus in the effluent was 45 mg COD·L-1, 14.9 mg N·L-1 and 0.5 mg P·L-1, respectively. Harvested solar energy and carbon dioxide biofixation in the form of microalgae biomass allowed remarkable methane yields (399 STP L CH4·kg-1 CODinf) to be achieved, equivalent to theoretical electricity productions of around 0.52 kWh per m3 of wastewater entering the WRRF. Furthermore, 26.6% of total nitrogen influent load was recovered as ammonium sulphate, while nitrogen and phosphorus were recovered in the biosolids produced (650 ± 77 mg N·L-1 and 121.0 ± 7.2 mg P·L-1).


Asunto(s)
Reactores Biológicos , Conservación de los Recursos Hídricos/métodos , Aguas del Alcantarillado , Purificación del Agua/métodos , Recursos Hídricos , Nitrógeno , Sulfatos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
3.
Bioresour Technol ; 298: 122521, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31830660

RESUMEN

Anaerobic co-digestion of primary sludge and raw microalgae (Scenedesmus and Chlorella) was performed in a lab-scale semi-continuous anaerobic membrane bioreactor to assess the biological performance and identify the microbial community involved in the co-digestion process. The reactor was operated at 35 °C for 440 days, working at a solids retention time of 100 days. The system achieved 73% biodegradability and showed high stability in terms of pH and volatile fatty acids. An enriched microbial community was observed. Of the several phyla, Chloroflexi and Proteobacteria were the most abundant. Cellulose-degraders phyla (Bacteroidetes, Chloroflexi and Thermotogae) were detected. Syntrophic microorganisms played an important role in intermediate degradation, enhancing methane production, mainly carried out by Methanosaeta. A nutrient-rich effluent (400 mg NH4-N·L-1 and 29 mg PO4-P·L-1) and digestate (860 mg N·L-1 and 151 mg P·L-1) were obtained. The bio-nutrients released from anaerobic co-digestion could be reused for microalgae cultivation or agricultural applications.


Asunto(s)
Chlorella , Microalgas , Anaerobiosis , Reactores Biológicos , Metano , Aguas del Alcantarillado
4.
Bioresour Technol ; 316: 123930, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32763806

RESUMEN

This research work proposes the scale-up evaluation in terms of biological and filtration performance from laboratory to pilot-scale of an anaerobic membrane bioreactor (AnMBR) co-digesting raw microalgae and primary sludge. Best operating conditions for this scale-up were energetically and economically assessed based on laboratory results. Economic balance showed 3% higher annual costs when operating a reactor at 100 d solids retention time (SRT) compared to 70 d SRT. Energetic balance showed a 5.5-fold increase in heat demand working at thermophilic temperature comparing to mesophilic. The AnMBR operating conditions were set at 70 d SRT and 35 °C. The pilot-scale and lab-scale co-digesters performed similarly in terms of biogas production and system stability. 154 mLbiogas·d-1·L-1reactor were produced at pilot-scale, corresponding to methane yield of 215 mLCH4·gCODinf-1. AnMBR filtration at both laboratory and pilot-scale showed stability working at permeate fluxes of 4.2-5.8 L·m-2·h-1.


Asunto(s)
Microalgas , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Filtración , Metano
5.
Bioresour Technol ; 244(Pt 1): 15-22, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28777986

RESUMEN

Microalgae cultivation appears to be a promising technology for treating nutrient-rich effluents from anaerobic membrane bioreactors, as microalgae are able to consume nutrients from sewage without an organic carbon source, although the sulphide formed during the anaerobic treatment does have negative effects on microalgae growth. Short and long-term experiments were carried out on the effects of sulphide on a mixed microalgae culture. The short-term experiments showed that the oxygen production rate (OPR) dropped as sulphide concentration increased: a concentration of 5mgSL-1 reduced OPR by 43%, while a concentration of 50mgSL-1 came close to completely inhibiting microalgae growth. The long-term experiments revealed that the presence of sulphide in the influent had inhibitory effects at sulphide concentrations above 20mgSL-1 in the culture, but not at concentrations below 5mgSL-1. These conditions favoured Chlorella growth over that of Scenedesmus.


Asunto(s)
Microalgas , Sulfuros , Chlorella , Scenedesmus , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA