Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(17): 5320-5333, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35727701

RESUMEN

Subterranean ventilation is a non-diffusive transport process that provokes the abrupt transfer of CO2 -rich air (previously stored) through water-free soil pores and cracks from the vadose zone to the atmosphere, under high-turbulence conditions. In dryland ecosystems, whose biological carbon exchanges are poorly characterized, it can strongly determine eddy-covariance CO2 fluxes that are used to validate remote sensing products and constrain models of gross primary productivity. Although subterranean ventilation episodes (VE) may occur in arid and semi-arid regions, which are unsung players in the global carbon cycle, little research has focused on the role of VE CO2 emissions in land-atmosphere CO2 exchange. This study shows clear empirical evidence of globally occurring VE. To identify VE, we used in situ quality-controlled eddy-covariance open data of carbon fluxes and ancillary variables from 145 sites in different open land covers (grassland, cropland, shrubland, savanna, and barren) across the globe. We selected the analyzed database from the FLUXNET2015, AmeriFlux, OzFlux, and AsiaFlux networks. To standardize the analysis, we designed an algorithm to detect CO2 emissions produced by VE at all sites considered in this study. Its main requirement is the presence of considerable and non-spurious correlation between the friction velocity (i.e., turbulence) and CO2 emissions. Of the sites analyzed, 34% exhibited the occurrence of VE. This vented CO2 emerged mainly from arid ecosystems (84%) and sites with hot and dry periods. Despite some limitations in data availability, this research demonstrates that VE-driven CO2 emissions occur globally. Future research should seek a better understanding of its drivers and the improvement of partitioning models, to reduce uncertainties in estimated biological CO2 exchanges and infer their contribution to the global net ecosystem carbon balance.


Asunto(s)
Dióxido de Carbono , Ecosistema , Carbono , Ciclo del Carbono , Viento
2.
Glob Chang Biol ; 25(4): e4-e6, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30614142

RESUMEN

In our recent study in Global Change Biology (Li et al., ), we examined the relationship between solar-induced chlorophyll fluorescence (SIF) measured from the Orbiting Carbon Observatory-2 (OCO-2) and gross primary productivity (GPP) derived from eddy covariance flux towers across the globe, and we discovered that there is a nearly universal relationship between SIF and GPP across a wide variety of biomes. This finding reveals the tremendous potential of SIF for accurately mapping terrestrial photosynthesis globally.

3.
Oecologia ; 175(3): 1005-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24817197

RESUMEN

Climate change may alter ecosystem functioning, as assessed via the net carbon (C) exchange (NEE) with the atmosphere, composed of the biological processes photosynthesis (GPP) and respiration (R(eco)). In addition, in semi-arid Mediterranean ecosystems, a significant fraction of respired CO2 is stored in the vadose zone and emitted afterwards by subsoil ventilation (VE), contributing also to NEE. Such conditions complicate the prediction of NEE for future change scenarios. To evaluate the possible effects of climate change on annual NEE and its underlying processes (GPP, R(eco) and VE) we present, over a climate/altitude range, the annual and interannual variability of NEE, GPP, R(eco) and VE in three Mediterranean sites. We found that annual NEE varied from a net source of around 130 gC m(-2) in hot and arid lowlands to a net sink of similar magnitude for alpine meadows (above 2,000 m a.s.l) that are less water stressed. Annual net C fixation increased because of increased GPP during intermittent and several growth periods occurring even during winter, as well as due to decreased VE. In terms of interannual variability, the studied subalpine site behaved as a neutral C sink (from emission of 49 to fixation of 30 gC m(-2) year(-1)), with precipitation as the main factor controlling annual GPP and R(eco). Finally, the importance of VE as 0-23% of annual NEE is highlighted, indicating that this process could shift some Mediterranean ecosystems from annual C sinks to sources.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Poaceae , Árboles , Altitud , Clima , Cambio Climático , Región Mediterránea , Fotosíntesis
4.
Biol Lett ; 6(3): 287-9, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20015858

RESUMEN

Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.


Asunto(s)
Ecosistema , Isótopos , Dióxido de Carbono , Ecología , Isótopos de Oxígeno , Plantas/metabolismo , Agua
5.
Sci Rep ; 8(1): 8570, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29872104

RESUMEN

Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes and seasonal behavior are driven by environmental and biological factors. We studied the seasonal behavior of net ecosystem CO2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The annual carbon balance was -53 g C m-2 in 2011 and -111 g C m-2 in 2012, showing that the ecosystem acts as a net sink of CO2, notwithstanding water limitations on photosynthesis observed in this particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa exhibited strong seasonality with peak values recorded in the winter season (July to September), as a result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE components at shorter time scales.

6.
FEMS Microbiol Ecol ; 81(1): 281-90, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22500975

RESUMEN

The walls and ceiling of Altamira Cave, northern Spain, are coated with different coloured spots (yellow, white and grey). Electron microscopy revealed that the grey spots are composed of bacteria and bioinduced CaCO(3) crystals. The morphology of the spots revealed a dense network of microorganisms organized in well-defined radial and dendritic divergent branches from the central area towards the exterior of the spot, which is coated with overlying spheroidal elements of CaCO(3) and CaCO(3) nest-like aggregates. Molecular analysis indicated that the grey spots were mainly formed by an unrecognized species of the genus Actinobacteria. CO(2) efflux measurements in rocks heavily covered by grey spots confirmed that bacteria-forming spots promoted uptake of the gas, which is abundant in the cave. The bacteria can use the captured CO(2) to dissolve the rock and subsequently generate crystals of CaCO(3) in periods of lower humidity and/or CO(2). A tentative model for the formation of these grey spots, supported by scanning electron microscopy and transmission electron microscopy data, is proposed.


Asunto(s)
Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Cuevas/microbiología , Actinobacteria/clasificación , Carbonato de Calcio/metabolismo , Dióxido de Carbono/metabolismo , Cuevas/química , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA