Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38522105

RESUMEN

We introduce a new scanning probe microscopy (SPM) concept called reverse tip sample scanning probe microscopy (RTS SPM), where the tip and sample positions are reversed as compared to traditional SPM. The main benefit of RTS SPM over the standard SPM configuration is that it allows for simple and fast tip changes. This overcomes two major limitations of SPM which are slow data acquisition and a strong dependency of the data on the tip condition. A probe chip with thousands of sharp integrated tips is the basis of our concept. We have developed a nanofabrication protocol for Si based probe chips and their functionalization with metal and diamond coatings, evaluated our probe chips for various RTS SPM applications (multi-tip imaging, SPM tomography, and correlative SPM), and showed the high potential of the RTS SPM concept.

2.
ACS Nano ; 18(15): 10653-10666, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38556983

RESUMEN

Implementing two-dimensional materials in field-effect transistors (FETs) offers the opportunity to continue the scaling trend in the complementary metal-oxide-semiconductor technology roadmap. Presently, the search for electrically active defects, in terms of both their density of energy states and their spatial distribution, has turned out to be of paramount importance in synthetic transition metal dichalcogenides layers, as they are suspected of severely inhibiting these devices from achieving their highest performance. Although advanced microscopy tools have allowed the direct detection of physical defects such as grain boundaries and point defects, their implementation at the device scale to assess the active defect distribution and their impact on field-induced channel charge modulation and current transport is strictly restrained. Therefore, it becomes critical to directly probe the gate modulation effect on the carrier population at the nanoscale of an FET channel, with the objective to establish a direct correlation with the device characteristics. Here, we have investigated the active channel in a monolayer MoS2 FET through in situ scanning probe microscopy, namely, Kelvin probe force microscopy and scanning capacitance microscopy, to directly identify active defect sites and to improve our understanding of the contribution of grain boundaries, bilayer islands, and defective grain domains to channel conductance.

3.
ACS Appl Mater Interfaces ; 15(21): 26175-26189, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37194926

RESUMEN

The complexity of the water adsorption-desorption mechanism at the interface of transition metal dichalcogenides (TMDs) and its impact on their current transport are not yet fully understood. Here, our work investigates the swift intercalation of atmospheric adsorbates at the TMD and sapphire interface and between two TMD monolayers and probes its influence on their electrical properties. The adsorbates consist mainly of hydroxyl-based (OH) species in the subsurface region suggesting persistent water intercalation even under vacuum conditions, as determined by time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and scanning tunneling microscopy (STM). Water intercalates there rapidly, within the order of a few minutes after being exposed to ambient atmosphere, this process tends to be partly reversible under (ultra)high vacuum, as observed by time-dependent scanning probe microscopy (SPM) based conductivity and ToF-SIMS measurements. A significant enhancement of the electronic properties is observed with the complete desorption of intercalated water clusters because of the pressure-induced melting effect under the tip of the SPM probe. Conversely, it also indicates that the characterization of TMD samples is substantially affected in air, in inert environments, and to some extent even in a vacuum if water intercalation is present. More importantly, STM analysis has uncovered a correlation between water intercalation and the presence of defects, showcasing their role in the gradual degradation of the material as it ages.

4.
ACS Nano ; 15(6): 9482-9494, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34042437

RESUMEN

In view of its epitaxial seeding capability, c-plane single crystalline sapphire represents one of the most enticing, industry-compatible templates to realize manufacturable deposition of single crystalline two-dimensional transition metal dichalcogenides (MX2) for functional, ultrascaled, nanoelectronic devices beyond silicon. Despite sapphire being atomically flat, the surface topography, structure, and chemical termination vary between sapphire terraces during the fabrication process. To date, it remains poorly understood how these sapphire surface anomalies affect the local epitaxial registry and the intrinsic electrical properties of the deposited MX2 monolayer. Therefore, molybdenum disulfide (MoS2) is deposited by metal-organic chemical vapor deposition (MOCVD) in an industry-standard epitaxial reactor on two types of c-plane sapphire with distinctly different terrace and step dimensions. Complementary scanning probe microscopy techniques reveal an inhomogeneous conductivity profile in the first epitaxial MoS2 monolayer on both sapphire templates. MoS2 regions with poor conductivity correspond to sapphire terraces with uncontrolled topography and surface structure. By intentionally applying a substantial off-axis cut angle (1° in this work), the sapphire terrace width and step height-and thus also surface structure-become more uniform across the substrate and MoS2 conducts the current more homogeneously. Moreover, these effects propagate into the extrinsic MoS2 device performance: the field-effect transistor variability reduces both within and across wafers at higher median electron mobility. Carefully controlling the sapphire surface topography and structure proves an essential prerequisite to systematically study and control the MX2 growth behavior and capture the influence on its structural and electrical properties.

5.
ACS Appl Mater Interfaces ; 13(14): 16766-16774, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33820414

RESUMEN

Thin-film organic near-infrared (NIR) photodiodes can be essential building blocks in the rapidly emerging fields including the internet of things and wearable electronics. However, the demonstration of NIR organic photodiodes with not only high responsivity but also low dark current density that is comparable to that of inorganic photodiodes, for example, below 1 nA cm-2 for silicon photodiodes, remains a challenge. In this work, we have demonstrated non-fullerene acceptor-based NIR photodiodes with an ultralow dark current density of 0.2 nA cm-2 at -2 V by innovating on charge transport layers to mitigate the reverse charge injection and interfacial defect-induced current generation. The same device also shows a high external quantum efficiency approaching 70% at 850 nm and a specific detectivity of over 1013 Jones at wavelengths up to 940 nm. Furthermore, the versatility of our approach for mitigating dark current is demonstrated using a NIR photodetector utilizing different non-fullerene systems. Finally, the practical application of NIR organic photodiodes is demonstrated with an image sensor integrated on a silicon CMOS readout. This work provides new insight into the device stack design of low-dark current NIR organic photodiodes for weak light detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA