Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Plant J ; 116(3): 921-941, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37609706

RESUMEN

Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.


Asunto(s)
Arabidopsis , Brassicaceae , Brassicaceae/fisiología , Arabidopsis/fisiología , Flores , Estrés Salino , Estrés Fisiológico , Agua
2.
Plant Physiol ; 192(1): 565-581, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36511947

RESUMEN

Detection of bacterial flagellin by the tomato (Solanum lycopersicum) receptors Flagellin sensing 2 (Fls2) and Fls3 triggers activation of pattern-triggered immunity (PTI). We identified the tomato Fls2/Fls3-interacting receptor-like cytoplasmic kinase 1 (Fir1) protein that is involved in PTI triggered by flagellin perception. Fir1 localized to the plasma membrane and interacted with Fls2 and Fls3 in yeast (Saccharomyces cerevisiae) and in planta. CRISPR/Cas9-generated tomato fir1 mutants were impaired in several immune responses induced by the flagellin-derived peptides flg22 and flgII-28, including resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, production of reactive oxygen species, and enhanced PATHOGENESIS-RELATED 1b (PR1b) gene expression, but not MAP kinase phosphorylation. Remarkably, fir1 mutants developed larger Pst DC3000 populations than wild-type plants, whereas no differences were observed in wild-type and fir1 mutant plants infected with the flagellin deficient Pst DC3000ΔfliC. fir1 mutants failed to close stomata when infected with Pst DC3000 and Pseudomonas fluorescens and were more susceptible to Pst DC3000 than wild-type plants when inoculated by dipping, but not by vacuum-infiltration, indicating involvement of Fir1 in preinvasion immunity. RNA-seq analysis detected fewer differentially expressed genes in fir1 mutants and altered expression of jasmonic acid (JA)-related genes. In support of JA response deregulation in fir1 mutants, these plants were similarly susceptible to Pst DC3000 and to the coronatine-deficient Pst DC3118 strain, and more resistant to the necrotrophic fungus Botrytis cinerea following PTI activation. These results indicate that tomato Fir1 is required for a subset of flagellin-triggered PTI responses and support a model in which Fir1 negatively regulates JA signaling during PTI activation.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Flagelina/metabolismo , Enfermedades de las Plantas/microbiología , Péptidos/metabolismo , Transducción de Señal/fisiología , Pseudomonas syringae/fisiología , Inmunidad de la Planta/genética , Regulación de la Expresión Génica de las Plantas
3.
Mol Plant Microbe Interact ; 35(9): 737-747, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35696659

RESUMEN

The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant Arabidopsis thaliana, revealing the potential to employ PP2C proteins to enhance plant disease resistance. As a first step towards focusing on the PP2C family for both basic and translational research, we analyzed the tomato genome sequence to ascertain the complement of the tomato PP2C family, identify conserved protein domains and signals in PP2C amino acid sequences, and examine domain combinations in individual proteins. We then identified tomato PP2Cs that are candidate regulators of single or multiple layers of the immune signaling network by in-depth analysis of publicly available RNA-seq datasets. These included expression profiles of plants treated with fungal or bacterial pathogen-associated molecular patterns, with pathogenic, nonpathogenic, and disarmed bacteria, as well as pathogenic fungi and oomycetes. Finally, we discuss the possible use of immunity-associated PP2Cs to better understand the signaling networks of plant immunity and to engineer durable and broad disease resistance in crop plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Inmunidad de la Planta , Plantas/genética , Proteínas Quinasas/genética
4.
Environ Microbiol ; 24(10): 4787-4802, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35706135

RESUMEN

The type VI secretion system (T6SS) is deployed by numerous Gram-negative bacteria to deliver toxic effectors into neighbouring cells. The genome of Pantoea agglomerans pv. betae (Pab) phytopathogenic bacteria contains a gene cluster (T6SS1) predicted to encode a complete T6SS. Using secretion and competition assays, we found that T6SS1 in Pab is a functional antibacterial system that allows this pathogen to outcompete rival plant-associated bacteria found in its natural environment. Computational analysis of the T6SS1 gene cluster revealed that antibacterial effector and immunity proteins are encoded within three genomic islands that also harbour arrays of orphan immunity genes or toxin and immunity cassettes. Functional analyses indicated that VgrG, a specialized antibacterial effector, contains a C-terminal catalytically active glucosaminidase domain that is used to degrade prey peptidoglycan. Moreover, we confirmed that a bicistronic unit at the end of the T6SS1 cluster encodes a novel antibacterial T6SS effector and immunity pair. Together, these results demonstrate that Pab T6SS1 is an antibacterial system delivering a lysozyme-like effector to eliminate competitors, and indicate that this bacterium contains additional novel T6SS effectors.


Asunto(s)
Pantoea , Sistemas de Secreción Tipo VI , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hexosaminidasas , Muramidasa/genética , Pantoea/genética , Peptidoglicano , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
5.
PLoS Pathog ; 14(1): e1006880, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29377937

RESUMEN

The Gram-negative bacterium Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial spot disease of pepper and tomato. Xe delivers effector proteins into host cells through the type III secretion system to promote disease. Here, we show that the Xe effector XopAU, which is conserved in numerous Xanthomonas species, is a catalytically active protein kinase and contributes to the development of disease symptoms in pepper plants. Agrobacterium-mediated expression of XopAU in host and non-host plants activated typical defense responses, including MAP kinase phosphorylation, accumulation of pathogenesis-related (PR) proteins and elicitation of cell death, that were dependent on the kinase activity of the effector. XopAU-mediated cell death was not dependent on early signaling components of effector-triggered immunity and was also observed when the effector was delivered into pepper leaves by Xanthomonas campestris pv. campestris, but not by Xe. Protein-protein interaction studies in yeast and in planta revealed that XopAU physically interacts with components of plant immunity-associated MAP kinase cascades. Remarkably, XopAU directly phosphorylated MKK2 in vitro and enhanced its phosphorylation at multiple sites in planta. Consistent with the notion that MKK2 is a target of XopAU, silencing of the MKK2 homolog or overexpression of the catalytically inactive mutant MKK2K99R in N. benthamiana plants reduced XopAU-mediated cell death and MAPK phosphorylation. Furthermore, yeast co-expressing XopAU and MKK2 displayed reduced growth and this phenotype was dependent on the kinase activity of both proteins. Together, our results support the conclusion that XopAU contributes to Xe disease symptoms in pepper plants and manipulates host MAPK signaling through phosphorylation and activation of MKK2.


Asunto(s)
Interacciones Huésped-Patógeno , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Quinasas/fisiología , Xanthomonas , Agrobacterium tumefaciens , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas/genética , Organismos Modificados Genéticamente , Proteínas de Plantas/metabolismo , Xanthomonas/enzimología , Xanthomonas/metabolismo
6.
Plant Physiol ; 180(2): 1166-1184, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30940686

RESUMEN

Plants utilize cell surface-localized pattern recognition receptors (PRRs) to detect pathogen- or damage-associated molecular patterns (PAMP/DAMPs) and initiate pattern-triggered immunity (PTI). Here, we investigated the role of Arabidopsis (Arabidopsis thaliana) BRASSINOSTEROID-SIGNALING KINASE5 (BSK5), a member of the receptor-like cytoplasmic kinase subfamily XII, in PRR-initiated immunity. BSK5 localized to the plant cell periphery, interacted in yeast and in planta with multiple receptor-like kinases, including the ELONGATION FACTOR-TU RECEPTOR (EFR) and PEP1 RECEPTOR1 (PEPR1) PRRs, and was phosphorylated in vitro by PEPR1 and EFR in the kinase activation loop. Consistent with a role in PTI, bsk5 mutant plants displayed enhanced susceptibility to the bacterial pathogen Pseudomonas syringae and to the fungus Botrytis cinerea Furthermore, bsk5 mutant plants were impaired in several immune responses induced by the elf18, pep1, and flg22 PAMP/DAMPs, including resistance to P. syringae and B. cinerea, production of reactive oxygen species, callose deposition at the cell wall, and enhanced PATHOGENESIS-RELATED1 gene expression. However, bsk5 plants were not affected in PAMP/DAMP activation of mitogen-activated protein kinases and expression of the FLG22-INDUCED RECEPTOR-LIKE KINASE1 or the WRKY domain-containing gene WRKY29 BSK5 variants mutated in the BSK5 myristoylation site, ATP-binding site, and kinase activation loop failed to complement defective PTI phenotypes of bsk5 mutant plants, suggesting that localization to the cell periphery, kinase activity, and phosphorylation by PRRs are critical for the function of BSK5 in PTI. These findings demonstrate that BSK5 plays a role in PTI by interacting with multiple immune receptors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Inmunidad de la Planta , Proteínas Quinasas/metabolismo , Receptores Inmunológicos/metabolismo , Alarminas/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Sitios de Unión , Botrytis/fisiología , Membrana Celular/metabolismo , Mutación/genética , Fosforilación , Unión Proteica , Proteínas Quinasas/química , Estructura Secundaria de Proteína , Pseudomonas syringae/fisiología , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/metabolismo
7.
Mol Plant Microbe Interact ; 32(11): 1496-1507, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31251114

RESUMEN

The molecular mechanisms acting between host recognition of pathogen effectors by nucleotide-binding leucine-rich repeat receptor (NLR) proteins and mitogen-activated protein kinase (MAPK) signaling cascades are unknown. MAPKKKα (M3Kα) activates MAPK signaling leading to programmed cell death (PCD) associated with NLR-triggered immunity. We identified a tomato M3Kα-interacting protein, SlMai1, that has 80% amino acid identity with Arabidopsis brassinosteroid kinase 1 (AtBsk1). SlMai1 has a protein kinase domain and a C-terminal tetratricopeptide repeat domain that interacts with the kinase domain of M3Kα. Virus-induced gene silencing of Mai1 homologs in Nicotiana benthamiana increased susceptibility to Pseudomonas syringae and compromised PCD induced by four NLR proteins. PCD was restored by expression of a synthetic SlMai1 gene that resists silencing. Expression of AtBsk1 did not restore PCD in Mai1-silenced plants, suggesting SlMai1 is functionally divergent from AtBsk1. PCD caused by overexpression of M3Kα or MKK2 was unaffected by Mai1 silencing, suggesting Mai1 acts upstream of these proteins. Coexpression of Mai1 with M3Kα in leaves enhanced MAPK phosphorylation and accelerated PCD. These findings suggest Mai1 is a molecular link acting between host recognition of pathogens and MAPK signaling.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas Quinasas Activadas por Mitógenos , Enfermedades de las Plantas , Transducción de Señal , Interacciones Huésped-Patógeno/fisiología , Solanum lycopersicum/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Pseudomonas syringae/enzimología , Nicotiana/enzimología
8.
J Bacteriol ; 200(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29784884

RESUMEN

The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles (AEal) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) comprise a single open reading frame (ORF) (xopAE), while in 5 alleles, including AEal 37 of the X. euvesicatoria 85-10 strain, a frameshift splits the locus into two ORFs (hpaF and a truncated xopAE). To test whether the second ORF of AEal 37 (xopAE85-10 ) is translated, we examined expression of yellow fluorescent protein (YFP) fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity to an internal ribosome binding site upstream of a rare ATT start codon in the xopAE85-10 ORF but was severely reduced when these elements were abolished. In agreement with the notion that xopAE85-10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system, and translocation was dependent on its upstream ORF, hpaF Homology modeling predicted that XopAE85-10 contains an E3 ligase XL box domain at the C terminus, and in vitro assays demonstrated that this domain displays monoubiquitination activity. Remarkably, the XL box was essential for XopAE85-10 to inhibit pathogen-associated molecular pattern (PAMP)-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT and encodes a novel XL box E3 ligase.IMPORTANCEXanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into the evolution, translocation, and biochemical function of the XopAE type III secreted effector, contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as a core effector of seven Xanthomonas species and elucidate the evolution of the Xanthomonas euvesicatoriaxopAE locus, which contains an operon encoding a truncated effector. Our findings indicate that this operon evolved from the split of a multidomain gene into two ORFs that conserved the original domain function. Analysis of xopAE85-10 translation provides the first evidence for translation initiation from an ATT codon in Xanthomonas Our data demonstrate that XopAE85-10 is an XL box E3 ubiquitin ligase and provide insights into the structure and function of this effector family.


Asunto(s)
Genes Bacterianos , Operón , Ubiquitina-Proteína Ligasas/genética , Xanthomonas/genética , Alelos , Proteínas Bacterianas , Evolución Molecular , Interacciones Huésped-Patógeno , Proteínas Luminiscentes , Sistemas de Lectura Abierta , Enfermedades de las Plantas/microbiología , Sistemas de Secreción Tipo III/genética
9.
Mol Plant Microbe Interact ; 31(2): 233-239, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28952399

RESUMEN

Salmonella enterica serovar Typhimurium, a human enteric pathogen, has the ability to multiply and survive endophytically in plants. Genes encoding the type III secretion system (T3SS) or its effectors (T3Es) may contribute to its colonization. Two reporter plasmids for T3E translocation into plant cells that are based on hypersensitive response domains of avirulence proteins from the Pantoea agglomerans-beet and Xanthomonas euvesicatoria-pepper pathosystems were employed in this study to investigate the role of T3Es in the interaction of Salmonella ser. Typhimurium 14028 with plants. The T3Es of Salmonella ser. Typhimurium, SipB and SifA, which are translocated into animal cells, could not be delivered by Salmonella ser. Typhimurium into cells of beet roots or pepper leaves. In contrast, these effectors were translocated into plant cells by the phytopathogenic bacteria P. agglomerans pv. betae, Erwinia amylovora, and X. euvesicatoria. Similarly, HsvG, a T3E of P. agglomerans pv. gypsophilae, and XopAU of X. euvesicatoria could be translocated into beet roots and pepper leaves, respectively, by the plant pathogens but not by Salmonella ser. Typhimurium. Mutations in Salmonella ser. Typhimurium T3SS genes invA, ssaV, sipB, or sifA, did not affect its endophytic colonization of lettuce leaves, supporting the notion that S. enterica cannot translocate T3Es into plant cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pantoea/fisiología , Salmonella enterica , Proteínas Bacterianas/genética , Técnicas Bacteriológicas , Capsicum/microbiología , Medios de Cultivo , Lactuca/microbiología , Carne , Translocación Genética/genética , Translocación Genética/fisiología , Xanthomonas
10.
Mol Plant Microbe Interact ; 31(12): 1301-1311, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29947282

RESUMEN

The 14-3-3 phospho-binding proteins with scaffolding activity play central roles in the regulation of enzymes and signaling complexes in eukaryotes. In plants, 14-3-3 isoforms are required for disease resistance and key targets of pathogen effectors. Here, we examined the requirement of the tomato (Solanum lycopersicum) 14-3-3 isoform (TFT) protein family for Xv3 disease resistance in response to the bacterial pathogen Xanthomonas euvesicatoria. In addition, we determined whether TFT proteins interact with the repertoire of X. euvesicatoria type III secretion effector proteins, including AvrXv3, the elicitor of Xv3 resistance. We show that multiple TFT contribute to Xv3 resistance. We also show that one or more TFT proteins physically interact with multiple effectors (AvrXv3, XopE1, XopE2, XopN, XopO, XopQ, and XopAU). Genetic analyses indicate that none of the identified effectors interfere with AvrXv3-elicited resistance into Xv3 tomato leaves; however, XopE1, XopE2, and XopO are required to suppress symptom development in susceptible tomato leaves. Phospho-peptide mapping revealed that XopE2 is phosphorylated at multiple residues in planta and residues T66, T131, and S334 are required for maximal binding to TFT10. Together, our data support the hypothesis that multiple TFT proteins are involved in immune signaling during X. euvesicatoria infection.


Asunto(s)
Proteínas 14-3-3/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Solanum lycopersicum/inmunología , Xanthomonas/fisiología , Proteínas 14-3-3/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Xanthomonas/genética
11.
PLoS Pathog ; 12(2): e1005360, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26914889

RESUMEN

Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. "Favourite" targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure-function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations of S. cerevisiae as a model system and its most promising future applications.


Asunto(s)
Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal , Animales , Apoptosis , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Fenotipo , Plantas/microbiología , Proteómica , Saccharomyces cerevisiae/fisiología , Transgenes , Factores de Virulencia
12.
Mol Plant Microbe Interact ; 29(8): 651-60, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27529660

RESUMEN

Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato. X. euvesicatoria bacteria interfere with plant cellular processes by injecting effector proteins into host cells through the type III secretion (T3S) system. About 35 T3S effectors have been identified in X. euvesicatoria 85-10, and a few of them were implicated in suppression of pattern-triggered immunity (PTI). We used an Arabidopsis thaliana pathogen-free protoplast-based assay to identify X. euvesicatoria 85-10 effectors that interfere with PTI signaling induced by the bacterial peptide flg22. Of 33 tested effectors, 17 inhibited activation of a PTI-inducible promoter. Among them, nine effectors also interfered with activation of an abscisic acid-inducible promoter. However, effectors that inhibited flg22-induced signaling did not affect phosphorylation of mitogen-activated protein (MAP) kinases acting downstream of flg22 perception. Further investigation of selected effectors revealed that XopAJ, XopE2, and XopF2 inhibited activation of a PTI-inducible promoter by the bacterial peptide elf18 in Arabidopsis protoplasts and by flg22 in tomato protoplasts. The effectors XopF2, XopE2, XopAP, XopAE, XopH, and XopAJ inhibited flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated Pseudomonas syringae bacteria. Finally, selected effectors were found to localize to various plant subcellular compartments. These results indicate that X. euvesicatoria bacteria utilize multiple T3S effectors to suppress flg22-induced signaling acting downstream or in parallel to MAP kinase cascades and suggest they act through different molecular mechanisms.


Asunto(s)
Arabidopsis/inmunología , Flagelina/antagonistas & inhibidores , Enfermedades de las Plantas/inmunología , Transducción de Señal , Sistemas de Secreción Tipo III/metabolismo , Xanthomonas/genética , Arabidopsis/microbiología , Genes Reporteros , Glucanos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas/genética , Protoplastos , Pseudomonas syringae/patogenicidad , Sistemas de Secreción Tipo III/genética , Xanthomonas/inmunología , Xanthomonas/patogenicidad
13.
PLoS Pathog ; 10(4): e1004057, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24763622

RESUMEN

Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/inmunología , Péptidos/inmunología , Phytophthora infestans/inmunología , Inmunidad de la Planta/fisiología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Péptidos/genética , Phytophthora infestans/genética
14.
Plant J ; 77(2): 297-309, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24279912

RESUMEN

Effector-triggered immunity (ETI) to host-adapted pathogens is associated with rapid cell death at the infection site. The plant-pathogenic bacterium Xanthomonas euvesicatoria (Xcv) interferes with plant cellular processes by injecting effector proteins into host cells through the type III secretion system. Here, we show that the Xcv effector XopQ suppresses cell death induced by components of the ETI-associated MAP kinase cascade MAPKKKα MEK2/SIPK and by several R/avr gene pairs. Inactivation of xopQ by insertional mutagenesis revealed that this effector inhibits ETI-associated cell death induced by avirulent Xcv in resistant pepper (Capsicum annuum), and enhances bacterial growth in resistant pepper and tomato (Solanum lycopersicum). Using protein-protein interaction studies in yeast (Saccharomyces cerevisiae) and in planta, we identified the tomato 14-3-3 isoform SlTFT4 and homologs from other plant species as XopQ interactors. A mutation in the putative 14-3-3 binding site of XopQ impaired interaction of the effector with CaTFT4 in yeast and its virulence function in planta. Consistent with a role in ETI, TFT4 mRNA abundance increased during the incompatible interaction of tomato and pepper with Xcv. Silencing of NbTFT4 in Nicotiana benthamiana significantly reduced cell death induced by MAPKKKα. In addition, silencing of CaTFT4 in pepper delayed the appearance of ETI-associated cell death and enhanced growth of virulent and avirulent Xcv, demonstrating the requirement of TFT4 for plant immunity to Xcv. Our results suggest that the XopQ virulence function is to suppress ETI and immunity-associated cell death by interacting with TFT4, which is an important component of ETI and a bona fide target of XopQ.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Solanum lycopersicum/metabolismo , Xanthomonas/fisiología , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Xanthomonas/metabolismo
15.
Mol Plant Microbe Interact ; 2015(1): 1-12, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27839071

RESUMEN

The plant pathogen Clavibacter michiganensis subsp. michiganensis (Cmm) is a Gram-positive bacterium responsible for wilt and canker disease of tomato. While disease development is well characterized and diagnosed, molecular mechanisms of Cmm virulence are poorly understood. Here, we identified and characterized two Cmm transcriptional regulators, Vatr1 and Vatr2, that are involved in pathogenicity of Cmm. Vatr1 and Vatr2 belong to TetR and MocR families of transcriptional regulators, respectively. Mutations in their corresponding genes caused attenuated virulence, with the Δvatr2 mutant showing a more dramatic effect than Δvatr1. While both mutants grew well in vitro and reached a high titer in planta, they caused reduced wilting and canker development in infected plants compared with the wild-type bacterium. They also led to a reduced expression of the ethylene-synthesizing tomato enzyme ACC-oxidase compared with wild-type Cmm and to reduced ethylene production in the plant. Transcriptomic analysis of wild-type Cmm and the two mutants under infection-mimicking conditions revealed that Vatr1 and Vatr2 regulate expression of virulence factors, membrane and secreted proteins, and signal transducing proteins. A 70% overlap between the sets of genes positively regulated by Vatr1 and Vatr2 suggests that these transcriptional regulators are on the same molecular pathway responsible for Cmm virulence.

16.
Plant J ; 74(6): 905-19, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23496207

RESUMEN

Arabidopsis thaliana brassinosteroid signaling kinases (BSKs) constitute a receptor-like cytoplasmic kinase sub-family (RLCK-XII) with 12 members. Previous analysis demonstrated a positive role for BSK1 and BSK3 in the initial steps of brassinosteroid (BR) signal transduction. To investigate the function of BSKs in plant growth and BR signaling, we characterized T-DNA insertion lines for eight BSK genes (BSK1-BSK8) and multiple mutant combinations. Simultaneous elimination of three BSK genes caused alterations in growth and the BR response, and the most severe phenotypes were observed in the bsk3,4,7,8 quadruple and bsk3,4,6,7,8 pentuple mutants, which displayed reduced rosette size, leaf curling and enhanced leaf inclination. In addition, upon treatment with 24-epibrassinolide, these mutants showed reduced hypocotyl elongation, enhanced root growth and alteration in the expression of BR-responsive genes. Some mutant combinations also showed antagonistic interactions. In support of a redundant function in BR signaling, multiple BSKs interacted in vivo with the BR receptor BRI1, and served as its phosphorylation substrates in vitro. The BIN2 and BIL2 GSK3-like kinases, which are negative regulators of BR signaling, interacted in vivo with BSKs and phosphorylated them in vitro, probably at different sites to BRI1. This study demonstrates redundant biological functions for BSKs, and suggests the existence of a regulatory link between BSKs and GSK3-like kinases.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Esteroides Heterocíclicos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Brasinoesteroides/farmacología , Flores/efectos de los fármacos , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Fenotipo , Fosforilación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia , Esteroides Heterocíclicos/farmacología , Técnicas del Sistema de Dos Híbridos
17.
Mol Plant Microbe Interact ; 27(10): 1035-47, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24940988

RESUMEN

The plant pathogen Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterium responsible for wilt and canker disease of tomato. Although disease development is well characterized and diagnosed, molecular mechanisms of C. michiganensis subsp. michiganensis virulence are poorly understood. Here, we identified and characterized two C. michiganensis subsp. michiganensis transcriptional regulators, Vatr1 and Vatr2, that are involved in pathogenicity of C. michiganensis subsp. michiganensis. Vatr1 and Vatr2 belong to TetR and MocR families of transcriptional regulators, respectively. Mutations in their corresponding genes caused attenuated virulence, with the Δvatr2 mutant showing a more dramatic effect than Δvatr1. Although both mutants grew well in vitro and reached a high titer in planta, they caused reduced wilting and canker development in infected plants compared with the wild-type bacterium. They also led to a reduced expression of the ethylene-synthesizing tomato enzyme ACC-oxidase compared with wild-type C. michiganensis subsp. michiganensis and to reduced ethylene production in the plant. Transcriptomic analysis of wild-type C. michiganensis subsp. michiganensis and the two mutants under infection-mimicking conditions revealed that Vatr1 and Vatr2 regulate expression of virulence factors, membrane and secreted proteins, and signal-transducing proteins. A 70% overlap between the sets of genes positively regulated by Vatr1 and Vatr2 suggests that these transcriptional regulators are on the same molecular pathway responsible for C. michiganensis subsp. michiganensis virulence.


Asunto(s)
Actinomycetales/genética , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Factores de Transcripción/genética , Actinomycetales/crecimiento & desarrollo , Actinomycetales/patogenicidad , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Etilenos/metabolismo , Perfilación de la Expresión Génica , Biblioteca de Genes , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN , Eliminación de Secuencia , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
18.
Cell Rep ; 43(4): 114015, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38568810

RESUMEN

The type VI secretion system (T6SS), a widespread protein delivery apparatus, plays a role in bacterial competition by delivering toxic effectors into neighboring cells. Identifying new T6SS effectors and deciphering the mechanism that governs their secretion remain major challenges. Here, we report two orphan antibacterial T6SS effectors in the pathogen Pantoea agglomerans (Pa). These effectors share an N-terminal domain, Pantoea type six (PIX), that defines a widespread class of polymorphic T6SS effectors in Enterobacterales. We show that the PIX domain is necessary and sufficient for T6SS-mediated effector secretion and that PIX binds to a specialized Pa VgrG protein outside its C-terminal toxic domain. Our findings underline the importance of identifying and characterizing delivery domains in polymorphic toxin classes as a tool to reveal effectors and shed light on effector delivery mechanisms.


Asunto(s)
Proteínas Bacterianas , Pantoea , Sistemas de Secreción Tipo VI , Proteínas Bacterianas/metabolismo , Pantoea/metabolismo , Unión Proteica , Dominios Proteicos , Sistemas de Secreción Tipo VI/metabolismo
19.
Mol Plant Microbe Interact ; 26(9): 1031-43, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23745675

RESUMEN

Gall formation by Pantoea agglomerans pv. gypsophilae is dependent on the hypersensitive response and pathogenicity (hrp) system. Previous studies demonstrated that PagR and PagI, regulators of the quorum-sensing system, induce expression of the hrp regulatory cascade (i.e., hrpXY, hrpS, and hrpL) that activates the HrpL regulon. Here, we isolated the genes of the Gac/Rsm global regulatory pathway (i.e., gacS, gacA, rsmB, and csrD) and of the post-transcriptional regulator rsmA. Our results demonstrate that PagR and PagI also upregulate expression of the Gac/Rsm pathway. PagR acts as a transcriptional activator of each of the hrp regulatory genes and gacA in a N-butanoyl-L-homoserine lactone-dependent manner as shown by gel shift experiments. Mutants of the Gac/Rsm genes or overexpression of rsmA significantly reduced Pantoea agglomerans virulence and colonization of gypsophila. Overexpression of rsmB sRNA abolished gall formation, colonization, and hypersensitive reaction on nonhost plants and prevented transcription of the hrp regulatory cascade, indicating a lack of functional type III secretion system. Expression of rsmB sRNA in the background of the csrD null mutant suggests that CsrD may act as a safeguard for preventing excessive production of rsmB sRNA. Results presented indicate that the hrp regulatory cascade is controlled directly by PagR and indirectly by RsmA, whereas deficiency in RsmA activity is epistatic to PagR induction.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Pantoea/genética , Pantoea/patogenicidad , Tumores de Planta/microbiología , Percepción de Quorum/genética , 4-Butirolactona/análogos & derivados , Proteínas Bacterianas/metabolismo , Caryophyllaceae/microbiología , Ensayo de Cambio de Movilidad Electroforética , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , Modelos Moleculares , Mutación , Pantoea/fisiología , Hojas de la Planta/microbiología , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Bacteriano/genética , Regulón , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Virulencia
20.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-36919057

RESUMEN

Plant cells detect potential pathogens through plasma membrane-localized pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) and activate pattern-triggered immunity (PTI). PRR-mediated MAMP perception is linked to PTI signaling by receptor-like cytoplasmic kinases (RLCKs). In tomato, Flagellin-sensing 2 (Fls2)/Fls3 interacting RLCK 1 (Fir1) is involved in PTI triggered by flagellin perception. Fir1 is necessary for regulation of jasmonic acid (JA) signaling and is involved in pre-invasion immunity. We show that Fir1 physically interacts with JASMONATE-ZIM-DOMAIN PROTEIN 3 (JAZ3), a negative regulator of JA signaling. This finding suggests that Fir1 modulates JA signaling by regulating JAZ3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA