Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754781

RESUMEN

OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 µM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 µM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 µM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.


Asunto(s)
Cardiotónicos , Miocitos Cardíacos , Animales , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cardiotónicos/farmacología , Cardiotónicos/química , Inflamasomas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Lipopolisacáridos/farmacología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones Endogámicos C57BL , Sirtuina 1/metabolismo , Antiinflamatorios/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/química , Endotoxemia/tratamiento farmacológico , Endotoxemia/metabolismo
2.
FASEB J ; 38(13): e23748, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940767

RESUMEN

12,13-dihydroxy-9z-octadecenoic acid (12,13-DiHOME) is a linoleic acid diol derived from cytochrome P-450 (CYP) epoxygenase and epoxide hydrolase (EH) metabolism. 12,13-DiHOME is associated with inflammation and mitochondrial damage in the innate immune response, but how 12,13-DiHOME contributes to these effects is unclear. We hypothesized that 12,13-DiHOME enhances macrophage inflammation through effects on NOD-like receptor protein 3 (NLRP3) inflammasome activation. To test this hypothesis, we utilized human monocytic THP1 cells differentiated into macrophage-like cells with phorbol myristate acetate (PMA). 12,13-DiHOME present during lipopolysaccharide (LPS)-priming of THP1 macrophages exacerbated nigericin-induced NLRP3 inflammasome activation. Using high-resolution respirometry, we observed that priming with LPS+12,13-DiHOME altered mitochondrial respiratory function. Mitophagy, measured using mito-Keima, was also modulated by 12,13-DiHOME present during priming. These mitochondrial effects were associated with increased sensitivity to nigericin-induced mitochondrial depolarization and reactive oxygen species production in LPS+12,13-DiHOME-primed macrophages. Nigericin-induced mitochondrial damage and NLRP3 inflammasome activation in LPS+12,13-DiHOME-primed macrophages were ablated by the mitochondrial calcium uniporter (MCU) inhibitor, Ru265. 12,13-DiHOME present during LPS-priming also enhanced nigericin-induced NLRP3 inflammasome activation in primary murine bone marrow-derived macrophages. In summary, these data demonstrate a pro-inflammatory role for 12,13-DiHOME by enhancing NLRP3 inflammasome activation in macrophages.


Asunto(s)
Inflamasomas , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Inflamasomas/metabolismo , Animales , Humanos , Ratones , Células THP-1 , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Linoleico/farmacología , Especies Reactivas de Oxígeno/metabolismo
3.
J Biol Chem ; 299(12): 105375, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865313

RESUMEN

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.


Asunto(s)
Acidosis Láctica , Alanina , Músculo Esquelético , Complejo Piruvato Deshidrogenasa , Ácido Pirúvico , Animales , Ratones , Acidosis Láctica/fisiopatología , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Glutamina/metabolismo , Alanina/metabolismo , Eliminación de Gen , Dieta , Mortalidad Prematura
4.
Am J Physiol Heart Circ Physiol ; 326(6): H1366-H1385, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578240

RESUMEN

Deterioration of physiological systems, like the cardiovascular system, occurs progressively with age impacting an individual's health and increasing susceptibility to injury and disease. Cellular senescence has an underlying role in age-related alterations and can be triggered by natural aging or prematurely by stressors such as the bacterial toxin lipopolysaccharide (LPS). The metabolism of polyunsaturated fatty acids by CYP450 enzymes produces numerous bioactive lipid mediators that can be further metabolized by soluble epoxide hydrolase (sEH) into diol metabolites, often with reduced biological effects. In our study, we observed age-related cardiac differences in female mice, where young mice demonstrated resistance to LPS injury, and genetic deletion or pharmacological inhibition of sEH using trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid attenuated LPS-induced cardiac dysfunction in aged female mice. Bulk RNA-sequencing analyses revealed transcriptomics differences in aged female hearts. The confirmatory analysis demonstrated changes to inflammatory and senescence gene markers such as Il-6, Mcp1, Il-1ß, Nlrp3, p21, p16, SA-ß-gal, and Gdf15 were attenuated in the hearts of aged female mice where sEH was deleted or inhibited. Collectively, these findings highlight the role of sEH in modulating the aging process of the heart, whereby targeting sEH is cardioprotective.NEW & NOTEWORTHY Soluble epoxide hydrolase (sEH) is an essential enzyme for converting epoxy fatty acids to their less bioactive diols. Our study suggests deletion or inhibition of sEH impacts the aging process in the hearts of female mice resulting in cardioprotection. Data indicate targeting sEH limits inflammation, preserves mitochondria, and alters cellular senescence in the aged female heart.


Asunto(s)
Envejecimiento , Epóxido Hidrolasas , Lipopolisacáridos , Animales , Femenino , Ratones , Factores de Edad , Envejecimiento/metabolismo , Senescencia Celular/efectos de los fármacos , Epóxido Hidrolasas/metabolismo , Epóxido Hidrolasas/genética , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores Sexuales
5.
J Cardiovasc Pharmacol ; 83(1): 105-115, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180457

RESUMEN

ABSTRACT: Mounting evidence suggests that cytochrome P450 epoxygenase-derived metabolites of docosahexaenoic acid, called epoxydocosapentaenoic acids (EDPs), limit mitochondrial damage after cardiac injury. In particular, the 19,20-EDP regioisomer has demonstrated potent cardioprotective action. Thus, we investigated our novel synthetic 19,20-EDP analog SA-22 for protection against cardiac ischemia-reperfusion (IR) injury. Isolated C57BL/6J mouse hearts were perfused through Langendorff apparatus for 20 minutes to obtain baseline function, followed by 30 minutes of global ischemia. Hearts were then treated with vehicle, 19,20-EDP, SA-22, or SA-22 with the pan-sirtuin inhibitor nicotinamide or the SIRT3-selective inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) at the start of 40 minutes reperfusion (N = 5-8). We assessed IR injury-induced changes in recovery of myocardial function, using left ventricular developed pressure and systolic and diastolic pressure change. Tissues were assessed for electron transport chain function, SIRT1 and SIRT3, optic atrophy type 1, and caspase-1. We also used H9c2 cells in an in vitro model of hypoxia/reoxygenation injury (N = 3-6). Hearts perfused with SA-22 had significantly improved postischemic left ventricular developed pressure, systolic and diastolic recovery (64% of baseline), compared with vehicle control (15% of baseline). In addition, treatment with SA-22 led to better catalytic function observed in electron transport chain and SIRT enzymes. The protective action of SA-22 resulted in reduced activation of pyroptosis in both hearts and cells after injury. Interestingly, although nicotinamide cotreatment worsened functional outcomes, cell survival, and attenuated sirtuin activity, it failed to completely attenuate SA-22-induced protection against pyroptosis, possibly indicating EDPs exert cytoprotection through pleiotropic mechanisms. In short, these data demonstrate the potential of our novel synthetic 19,20-EDP analog, SA-22, against IR/hypoxia-reoxygenation injury and justify further development of therapeutic agents based on 19,20-EDP.


Asunto(s)
Sirtuina 3 , Ratones , Animales , Ratones Endogámicos C57BL , Hipoxia , Isquemia , Niacinamida
6.
Basic Res Cardiol ; 118(1): 29, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495895

RESUMEN

During myocardial ischemia and reperfusion (IR) injury matrix metalloproteinase-2 (MMP-2) is rapidly activated in response to oxidative stress. MMP-2 is a multifunctional protease that cleaves both extracellular and intracellular proteins. Oxidative stress also impairs mitochondrial function which is regulated by different proteins, including mitofusin-2 (Mfn-2), which is lost in IR injury. Oxidative stress and mitochondrial dysfunction trigger the NLRP3 inflammasome and the innate immune response which invokes the de novo expression of an N-terminal truncated isoform of MMP-2 (NTT-MMP-2) at or near mitochondria. We hypothesized that MMP-2 proteolyzes Mfn-2 during myocardial IR injury, impairing mitochondrial function and enhancing the inflammasome response. Isolated hearts from mice subjected to IR injury (30 min ischemia/40 min reperfusion) showed a significant reduction in left ventricular developed pressure (LVDP) compared to aerobically perfused hearts. IR injury increased MMP-2 activity as observed by gelatin zymography and increased degradation of troponin I, an intracellular MMP-2 target. MMP-2 preferring inhibitors, ARP-100 or ONO-4817, improved post-ischemic recovery of LVDP compared to vehicle perfused IR hearts. In muscle fibers isolated from IR hearts the rates of mitochondrial oxygen consumption and ATP production were impaired compared to those from aerobic hearts, whereas ARP-100 or ONO-4817 attenuated these reductions. IR hearts showed higher levels of NLRP3, cleaved caspase-1 and interleukin-1ß in the cytosolic fraction, while the mitochondria-enriched fraction showed reduced levels of Mfn-2, compared to aerobic hearts. ARP-100 or ONO-4817 attenuated these changes. Co-immunoprecipitation showed that MMP-2 is associated with Mfn-2 in aerobic and IR hearts. ARP-100 or ONO-4817 also reduced infarct size and cell death in hearts subjected to 45 min ischemia/120 min reperfusion. Following myocardial IR injury, impaired contractile function and mitochondrial respiration and elevated inflammasome response could be attributed, at least in part, to MMP-2 activation, which targets and cleaves mitochondrial Mfn-2. Inhibition of MMP-2 activity protects against cardiac contractile dysfunction in IR injury in part by preserving Mfn-2 and suppressing inflammation.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Ratones , Inflamasomas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
7.
J Mol Cell Cardiol ; 164: 13-16, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774871

RESUMEN

Aged males disproportionately succumb to increased COVID-19 severity, hospitalization, and mortality compared to females. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) facilitate SARS-CoV-2 viral entry and may have sexually dimorphic regulation. As viral load dictates disease severity, we investigated the expression, protein levels, and activity of ACE2 and TMPRSS2. Our data reveal that aged males have elevated ACE2 in both mice and humans across organs. We report the first comparative study comprehensively investigating the impact of sex and age in murine and human levels of ACE2 and TMPRSS2, to begin to elucidate the sex bias in COVID-19 severity.


Asunto(s)
Envejecimiento/metabolismo , Enzima Convertidora de Angiotensina 2/biosíntesis , COVID-19/epidemiología , Regulación Enzimológica de la Expresión Génica , Receptores Virales/biosíntesis , SARS-CoV-2/fisiología , Caracteres Sexuales , Envejecimiento/genética , Enzima Convertidora de Angiotensina 2/genética , Animales , Susceptibilidad a Enfermedades , Femenino , Corazón/virología , Humanos , Intestino Delgado/enzimología , Intestino Delgado/virología , Riñón/enzimología , Riñón/virología , Pulmón/enzimología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocardio/enzimología , Especificidad de Órganos , Receptores Virales/genética , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Adulto Joven
8.
Circulation ; 143(22): 2188-2204, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33832341

RESUMEN

BACKGROUND: SGLT2 (sodium/glucose cotransporter 2) inhibitors exert robust cardioprotective effects against heart failure in patients with diabetes, and there is intense interest to identify the underlying molecular mechanisms that afford this protection. Because the induction of the late component of the cardiac sodium channel current (late-INa) is involved in the etiology of heart failure, we investigated whether these drugs inhibit late-INa. METHODS: Electrophysiological, in silico molecular docking, molecular, calcium imaging, and whole heart perfusion techniques were used to address this question. RESULTS: The SGLT2 inhibitor empagliflozin reduced late-INa in cardiomyocytes from mice with heart failure and in cardiac Nav1.5 sodium channels containing the long QT syndrome 3 mutations R1623Q or ΔKPQ. Empagliflozin, dapagliflozin, and canagliflozin are all potent and selective inhibitors of H2O2-induced late-INa (half maximal inhibitory concentration = 0.79, 0.58, and 1.26 µM, respectively) with little effect on peak sodium current. In mouse cardiomyocytes, empagliflozin reduced the incidence of spontaneous calcium transients induced by the late-INa activator veratridine in a similar manner to tetrodotoxin, ranolazine, and lidocaine. The putative binding sites for empagliflozin within Nav1.5 were investigated by simulations of empagliflozin docking to a three-dimensional homology model of human Nav1.5 and point mutagenic approaches. Our results indicate that empagliflozin binds to Nav1.5 in the same region as local anesthetics and ranolazine. In an acute model of myocardial injury, perfusion of isolated mouse hearts with empagliflozin or tetrodotoxin prevented activation of the cardiac NLRP3 (nuclear-binding domain-like receptor 3) inflammasome and improved functional recovery after ischemia. CONCLUSIONS: Our results provide evidence that late-INa may be an important molecular target in the heart for the SGLT2 inhibitors, contributing to their unexpected cardioprotective effects.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Canales de Sodio/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Compuestos de Bencidrilo/uso terapéutico , Glucósidos/uso terapéutico , Humanos , Masculino , Ratones , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
9.
Am J Physiol Heart Circ Physiol ; 323(4): H670-H687, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985007

RESUMEN

Endotoxemia elicits a multiorgan inflammatory response that results in cardiac dysfunction and often leads to death. Inflammation-induced metabolism of endogenous N-3 and N-6 polyunsaturated fatty acids generates numerous lipid mediators, such as epoxy fatty acids (EpFAs), which protect the heart. However, EpFAs are hydrolyzed by soluble epoxide hydrolase (sEH), which attenuates their cardioprotective actions. Global genetic disruption of sEH preserves EpFA levels and attenuates cardiac dysfunction in mice following acute lipopolysaccharide (LPS)-induced inflammatory injury. In leukocytes, EpFAs modulate the innate immune system through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. However, the mechanisms by which both EpFAs and sEH inhibition exert their protective effects in the cardiomyocyte are still elusive. This study investigated whether cardiomyocyte-specific sEH disruption attenuates inflammation and cardiac dysfunction in acute LPS inflammatory injury via modulation of the NLRP3 inflammasome. We use tamoxifen-inducible CreER recombinase technology to target sEH genetic disruption to the cardiomyocyte. Primary cardiomyocyte studies provide mechanistic insight into inflammasome signaling. For the first time, we demonstrate that cardiomyocyte-specific sEH disruption preserves cardiac function and attenuates inflammatory responses by limiting local cardiac inflammation and activation of the systemic immune response. Mechanistically, inhibition of cardiomyocyte-specific sEH activity or exogenous EpFA treatment do not prevent upregulation of NLRP3 inflammasome machinery in neonatal rat cardiomyocytes. Rather, they limit downstream activation of the pathway leading to release of fewer chemoattractant factors and recruitment of immune cells to the heart. These data emphasize that cardiomyocyte sEH is vital for mediating detrimental systemic inflammation.NEW & NOTEWORTHY The cardioprotective effects of genetic disruption and pharmacological inhibition of sEH have been demonstrated in a variety of cardiac disease models, including acute LPS inflammatory injury. For the first time, it has been demonstrated that sEH genetic disruption limited to the cardiomyocyte profoundly preserves cardiac function and limits local and systemic inflammation following acute LPS exposure. Hence, cardiomyocytes serve a critical role in the innate immune response that can be modulated to protect the heart.


Asunto(s)
Cardiopatías , Miocitos Cardíacos , Animales , Factores Quimiotácticos/uso terapéutico , Epóxido Hidrolasas/genética , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/uso terapéutico , Inflamasomas , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ratas , Recombinasas/uso terapéutico , Tamoxifeno/uso terapéutico
10.
Biochem Biophys Res Commun ; 625: 167-173, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963163

RESUMEN

Cancer cells rely on glycolysis to generate ATP for survival. However, inhibiting glycolysis is insufficient for the eradication of cancer cells because glycolysis-suppressed cells undergo metabolic reprogramming toward mitochondrial oxidative phosphorylation. We previously described that upon glycolytic suppression in pancreatic cancer cells, intracellular glycometabolism is shifted toward mitochondrial oxidative phosphorylation in an autophagy-dependent manner for cellular survival. Here, we hypothesized that mitophagy, which selectively degrades mitochondria via autophagy, is involved in mitochondrial activation under metabolic reprogramming. We revealed that glycolytic suppression notably increased mitochondrial membrane potential and mitophagy in a pancreatic cancer cell model (PANC-1). PTEN-induced kinase 1 (PINK1), a ubiquitin kinase that regulates mitophagy in healthy cells, regulated mitochondrial activation through mitophagy by glycolytic suppression. However, Parkin, a ubiquitin ligase regulated by PINK1 in healthy cells to induce mitophagy, was not involved in the PINK1-dependent mitophagy of the cancer glycometabolism. These results imply that cancer cells and healthy cells have different regulatory pieces of machinery for mitophagy, and inhibition of cancer-specific mechanisms may be a potential strategy for cancer therapy targeting metabolic reprogramming.


Asunto(s)
Mitofagia , Neoplasias Pancreáticas , Proteínas Quinasas , Humanos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Can J Physiol Pharmacol ; 100(2): 184-191, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34597523

RESUMEN

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein which mediates staurosporine (STS) - induced cell death. AIF cleavage and translocation to the cytosol is thought to be calpain-1-dependent as calpain inhibitors reduce AIF proteolysis; however, many calpain inhibitors also inhibit matrix metalloproteinase-2 (MMP-2) activity, an intracellular and extracellular protease implicated in apoptosis. Here we investigated whether MMP-2 activity is affected in response to STS and if it contributes to AIF cleavage. Human fibrosarcoma HT1080 cells were treated with STS (0.1 µM, 0.25-24 h). A significant increase in cellular MMP-2 activity was seen by gelatin zymography after a 6 h STS treatment, prior to induction of cell necrosis. Western blot showed the time-dependent appearance of two forms of AIF (∼60 and 45 kDa) in the cytosol which were significantly increased at 6 h. Surprisingly, knocking down MMP-2 or inhibiting its activity with MMP-2 preferring inhibitors ARP-100 or ONO-4817, or inhibiting calpain activity with ALLM or PD150606, did not prevent the STS-induced increase in cytosolic AIF. These results show that although STS rapidly increases MMP-2 activity, the cytosolic release of AIF may be independent of the proteolytic activities of MMP-2 or calpain.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Estaurosporina/farmacología , Calpaína/metabolismo , Citosol/metabolismo , Humanos , Proteolisis , Células Tumorales Cultivadas
12.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567578

RESUMEN

Myocardial infarction (MI) accounts for a significant proportion of death and morbidity in aged individuals. The risk for MI in females increases as they enter the peri-menopausal period, generally occurring in middle-age. Cytochrome (CYP) 450 metabolizes N-3 and N-6 polyunsaturated fatty acids (PUFA) into numerous lipid mediators, oxylipids, which are further metabolised by soluble epoxide hydrolase (sEH), reducing their activity. The objective of this study was to characterize oxylipid metabolism in the left ventricle (LV) following ischemic injury in females. Human LV specimens were procured from female patients with ischemic cardiomyopathy (ICM) or non-failing controls (NFC). Female C57BL6 (WT) and sEH null mice averaging 13-16 months old underwent permanent occlusion of the left anterior descending coronary artery (LAD) to induce myocardial infarction. WT (wild type) mice received vehicle or sEH inhibitor, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (tAUCB), in their drinking water ad libitum for 28 days. Cardiac function was assessed using echocardiography and electrocardiogram. Protein expression was determined using immunoblotting, mitochondrial activity by spectrophotometry, and cardiac fibre respiration was measured using a Clark-type electrode. A full metabolite profile was determined by LC-MS/MS. sEH was significantly elevated in ischemic LV specimens from patients, associated with fundamental changes in oxylipid metabolite formation and significant decreases in mitochondrial enzymatic function. In mice, pre-treatment with tAUCB or genetic deletion of sEH significantly improved survival, preserved cardiac function, and maintained mitochondrial quality following MI in female mice. These data indicate that sEH may be a relevant pharmacologic target for women with MI. Although future studies are needed to determine the mechanisms, in this pilot study we suggest targeting sEH may be an effective strategy for reducing ischemic injury and mortality in middle-aged females.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/fisiología , Corazón/efectos de los fármacos , Isquemia Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Animales , Estudios de Casos y Controles , Familia 2 del Citocromo P450/fisiología , Epóxido Hidrolasas/antagonistas & inhibidores , Femenino , Corazón/fisiopatología , Humanos , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isquemia Miocárdica/etiología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Tasa de Supervivencia , Espectrometría de Masas en Tándem
13.
Cardiovasc Diabetol ; 19(1): 207, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287820

RESUMEN

BACKGROUND: Glucose oxidation is a major contributor to myocardial energy production and its contribution is orchestrated by insulin. While insulin can increase glucose oxidation indirectly by enhancing glucose uptake and glycolysis, it also directly stimulates mitochondrial glucose oxidation, independent of increasing glucose uptake or glycolysis, through activating mitochondrial pyruvate dehydrogenase (PDH), the rate-limiting enzyme of glucose oxidation. However, how insulin directly stimulates PDH is not known. To determine this, we characterized the impacts of modifying mitochondrial insulin signaling kinases, namely protein kinase B (Akt), protein kinase C-delta (PKC-δ) and glycogen synthase kinase-3 beta (GSK-3ß), on the direct insulin stimulation of glucose oxidation. METHODS: We employed an isolated working mouse heart model to measure the effect of insulin on cardiac glycolysis, glucose oxidation and fatty acid oxidation and how that could be affected when mitochondrial Akt, PKC-δ or GSK-3ß is disturbed using pharmacological modulators. We also used differential centrifugation to isolate mitochondrial and cytosol fraction to examine the activity of Akt, PKC-δ and GSK-3ß between these fractions. Data were analyzed using unpaired t-test and two-way ANOVA. RESULTS: Here we show that insulin-stimulated phosphorylation of mitochondrial Akt is a prerequisite for transducing insulin's direct stimulation of glucose oxidation. Inhibition of mitochondrial Akt completely abolishes insulin-stimulated glucose oxidation, independent of glucose uptake or glycolysis. We also show a novel role of mitochondrial PKC-δ in modulating mitochondrial glucose oxidation. Inhibition of mitochondrial PKC-δ mimics insulin stimulation of glucose oxidation and mitochondrial Akt. We also demonstrate that inhibition of mitochondrial GSK3ß phosphorylation does not influence insulin-stimulated glucose oxidation. CONCLUSION: We identify, for the first time, insulin-stimulated mitochondrial Akt as a prerequisite transmitter of the insulin signal that directly stimulates cardiac glucose oxidation. These novel findings suggest that targeting mitochondrial Akt is a potential therapeutic approach to enhance cardiac insulin sensitivity in condition such as heart failure, diabetes and obesity.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Insulina/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Fosforilación , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
14.
Exp Physiol ; 105(2): 270-281, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31802553

RESUMEN

NEW FINDINGS: What is the central question of the study? Does the action of l-citrulline, which has been shown to augment performance in animals and athletes, possibly via increasing mitochondrial function, translate to obese animals, and does this improve glycaemia? What is the main finding and its importance? Chronic supplementation with l-citrulline improves not only exercise capacity, but also glycaemia in obese mice, which would be beneficial as obese individuals are at increased risk for type 2 diabetes. However, l-citrulline supplementation also caused a mild impairment in insulin signalling and insulin tolerance in obese mice. ABSTRACT: l-Citrulline is an organic α-amino acid that has been shown to have a number of salutary actions on whole-body physiology, including reducing muscle wasting and augmenting exercise and muscle performance. The latter has been suggested to arise from elevations in mitochondrial function. Because enhancing mitochondrial function has been proposed as a novel strategy to mitigate insulin resistance, our goal was to determine whether supplementation with l-citrulline could also improve glycaemia in an experimental mouse model of obesity. We hypothesized that l-citrulline treatment would improve glycaemia in obese mice, and this would be associated with elevations in skeletal muscle mitochondrial function. Ten-week-old C57BL/6J mice were fed either a low-fat (10% kcal from lard) or a high-fat (60% kcal from lard) diet, while receiving drinking water supplemented with either vehicle or l-citrulline (0.6 g l-1 ) for 15 weeks. Glucose homeostasis was assessed via glucose/insulin tolerance testing, while in vivo metabolism was assessed via indirect calorimetry, and forced exercise treadmill testing was utilized to assess endurance. As expected, obese mice supplemented with l-citrulline exhibited an increase in exercise capacity, which was associated with an improvement in glucose tolerance. Consistent with augmented mitochondrial function, we observed an increase in whole body oxygen consumption rates in obese mice supplemented with l-citrulline. Surprisingly, l-citrulline supplementation worsened insulin tolerance and reduced insulin signalling in obese mice. Taken together, although l-citrulline supplementation improves both glucose tolerance and exercise capacity in obese mice, caution must be applied with its broad use as a nutraceutical due to a potential deterioration of insulin sensitivity.


Asunto(s)
Glucemia/efectos de los fármacos , Citrulina/farmacología , Tolerancia al Ejercicio/efectos de los fármacos , Obesidad/tratamiento farmacológico , Animales , Glucemia/metabolismo , Citrulina/uso terapéutico , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Tolerancia al Ejercicio/fisiología , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo
15.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722183

RESUMEN

While survival rates have markedly improved following cardiac ischemia-reperfusion (IR) injury, the resulting heart damage remains an important issue. Preserving mitochondrial quality and limiting NLRP3 inflammasome activation is an approach to limit IR injury, in which the mitochondrial deacetylase sirtuin 3 (SIRT3) has a role. Recent data demonstrate cytochrome P450 (CYP450)-derived epoxy metabolites, epoxydocosapentaenoic acids (EDPs), of docosahexaenoic acid (DHA), attenuate cardiac IR injury. EDPs undergo rapid removal and inactivation by enzymatic and non-enzymatic processes. The current study hypothesizes that the cardioprotective effects of the synthetic EDP surrogates AS-27, SA-26 and AA-4 against IR injury involve activation of SIRT3. Isolated hearts from wild type (WT) mice were perfused in the Langendorff mode with vehicle, AS-27, SA-26 or AA-4. Improved postischemic functional recovery, maintained cardiac ATP levels, reduced oxidative stress and attenuation of NLRP3 activation were observed in hearts perfused with the analogue SA-26. Assessment of cardiac mitochondria demonstrated SA-26 preserved SIRT3 activity and reduced acetylation of manganese superoxide dismutase (MnSOD) suggesting enhanced antioxidant capacity. Together, these data demonstrate that the cardioprotective effects of the EDP analogue SA-26 against IR injury involve preservation of mitochondrial SIRT3 activity, which attenuates a detrimental innate NLRP3 inflammasome response.


Asunto(s)
Ácidos Docosahexaenoicos , Daño por Reperfusión Miocárdica , Miocardio/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sirtuina 3/metabolismo , Animales , Ácidos Docosahexaenoicos/análogos & derivados , Ácidos Docosahexaenoicos/síntesis química , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/farmacología , Femenino , Masculino , Ratones , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología
16.
Can J Physiol Pharmacol ; 97(6): 544-556, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30326194

RESUMEN

Impaired mitochondrial function and activation of NLRP3 inflammasome cascade has a significant role in the pathogenesis of myocardial ischemia-reperfusion (IR) injury. The current study investigated whether eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or their corresponding CYP epoxygenase metabolites 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) protect against IR injury. Isolated mouse hearts were perfused in the Langendorff mode with vehicle, DHA, 19,20-EDP, EPA, or 17,18-EEQ and subjected to 30 min of ischemia and followed by 40 min of reperfusion. In contrast with EPA and 17,18-EEQ, DHA and 19,20-EDP exerted cardioprotection, as shown by a significant improvement in postischemic functional recovery associated with significant attenuation of NLRP3 inflammasome complex activation and preserved mitochondrial function. Hearts perfused with DHA or 19,20-EDP displayed a marked reduction in localization of mitochondrial Drp-1 and Mfn-2 as well as maintained Opa-1 levels. DHA and 19,20-EDP preserved the activities of both the cytosolic Trx-1 and mitochondrial Trx-2. DHA cardioprotective effect was attenuated by the CYP epoxygenase inhibitor N-(methysulfonyl)-2-(2-propynyloxy)-benzenehexanamide. In conclusion, our data indicate a differential cardioprotective response between DHA, EPA, and their active metabolites toward IR injury. Interestingly, 19,20-EDP provided the best protection against IR injury via maintaining mitochondrial function and thereby reducing the detrimental NLRP3 inflammasome responses.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Compuestos Epoxi/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Biochem J ; 475(5): 959-976, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29438065

RESUMEN

The role of carnitine acetyltransferase (CrAT) in regulating cardiac energy metabolism is poorly understood. CrAT modulates mitochondrial acetyl-CoA/CoA (coenzyme A) ratios, thus regulating pyruvate dehydrogenase activity and glucose oxidation. Here, we propose that cardiac CrAT also provides cytosolic acetyl-CoA for the production of malonyl-CoA, a potent inhibitor of fatty acid oxidation. We show that in the murine cardiomyocyte cytosol, reverse CrAT activity (RCrAT, producing acetyl-CoA) is higher compared with the liver, which primarily uses ATP-citrate lyase to produce cytosolic acetyl-CoA for lipogenesis. The heart displayed a lower RCrAT Km for CoA compared with the liver. Furthermore, cytosolic RCrAT accounted for 4.6 ± 0.7% of total activity in heart tissue and 12.7 ± 0.2% in H9C2 cells, while highly purified heart cytosolic fractions showed significant CrAT protein levels. To investigate the relationship between CrAT and acetyl-CoA carboxylase (ACC), the cytosolic enzyme catalyzing malonyl-CoA production from acetyl-CoA, we studied ACC2-knockout mouse hearts which showed decreased CrAT protein levels and activity, associated with increased palmitate oxidation and acetyl-CoA/CoA ratio compared with controls. Conversely, feeding mice a high-fat diet for 10 weeks increased cardiac CrAT protein levels and activity, associated with a reduced acetyl-CoA/CoA ratio and glucose oxidation. These data support the presence of a cytosolic CrAT with a low Km for CoA, favoring the formation of cytosolic acetyl-CoA, providing an additional source to the classical ATP-citrate lyase pathway, and that there is an inverse relation between CrAT and the ratio of acetyl-CoA/CoA as evident in conditions affecting the regulation of cardiac energy metabolism.


Asunto(s)
Acetilcoenzima A/metabolismo , Carnitina O-Acetiltransferasa/fisiología , Citosol/metabolismo , Metabolismo Energético/genética , Miocardio/metabolismo , Animales , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Células Cultivadas , Dieta Alta en Grasa , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Oxidación-Reducción
18.
Int J Mol Sci ; 20(14)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319469

RESUMEN

Activation of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome cascade has a role in the pathogenesis of ischemia/reperfusion (IR) injury. There is growing evidence indicating cytochrome p450 (CYP450)-derived metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) possess both adverse and protective effects in the heart. CYP-derived epoxy metabolites are rapidly hydrolyzed by the soluble epoxide hydrolase (sEH). The current study hypothesized that the cardioprotective effects of inhibiting sEH involves limiting activation of the NLRP3 inflammasome. Isolated hearts from young wild-type (WT) and sEH null mice were perfused in the Langendorff mode with either vehicle or the specific sEH inhibitor t-AUCB. Improved post-ischemic functional recovery and better mitochondrial respiration were observed in both sEH null hearts or WT hearts perfused with t-AUCB. Inhibition of sEH markedly attenuated the activation of the NLRP3 inflammasome complex and limited the mitochondrial localization of the fission protein dynamin-related protein-1 (Drp-1) triggered by IR injury. Cardioprotective effects stemming from the inhibition of sEH included preserved activities of both cytosolic thioredoxin (Trx)-1 and mitochondrial Trx-2 antioxidant enzymes. Together, these data demonstrate that inhibiting sEH imparts cardioprotection against IR injury via maintaining post-ischemic mitochondrial function and attenuating a detrimental innate inflammatory response.


Asunto(s)
Epóxido Hidrolasas/genética , Eliminación de Gen , Inflamasomas/metabolismo , Daño por Reperfusión Miocárdica/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Epóxido Hidrolasas/metabolismo , Inflamasomas/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Miocardio/enzimología , Miocardio/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética
19.
Am J Physiol Heart Circ Physiol ; 312(4): H842-H853, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159807

RESUMEN

We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg-1·day-1) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients.NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms.


Asunto(s)
Antioxidantes/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/efectos de los fármacos , Esfuerzo Físico/efectos de los fármacos , Estilbenos/farmacología , Animales , Metabolismo Energético/efectos de los fármacos , Tolerancia al Ejercicio/efectos de los fármacos , Fatiga/prevención & control , Glucosa/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Condicionamiento Físico Animal , Resveratrol , Volumen Sistólico/efectos de los fármacos
20.
Artículo en Inglés | MEDLINE | ID: mdl-28104457

RESUMEN

BACKGROUND: Pathophysiological responses, including cardiovascular complications, often alter with age. Cardioprotective effects of epoxyeicosatrienoic acids (EETs) toward acute myocardial ischemia-reperfusion injury have been well documented. However, biological relevance of EET-evoked cardioprotection in the ageing myocardium remains unknown. EETs are metabolized to less active metabolites by the enzyme soluble epoxide hydrolase (sEH). This study uses permanent occlusion of the left anterior descending artery (LAD) in young and aged sEH null and WT mice to compare cardiac and mitochondrial function following ischemic injury. METHODS: Age-matched 16 month old (aged) and 3 month old (young) sEH null and littermate wild-type (WT) mice were subjected to permanent occlusion of the left anterior descending coronary artery. Echocardiography was used to assess cardiac structure and function prior-to and 7days post-myocardial infarction with tetrazolium chloride staining to determine infarct size. Mitochondrial ultrastructure was obtained using electron microscopy. Caspase-3, 20S proteasome, aconitase and mitochondrial ETC enzymatic activities were ascertained using established protocols. Mitochondrial respiration was assessed using a Clark electrode in permeabilized cardiac fibers to obtain respiratory control ratios. RESULTS: Markers of cell injury, mitochondrial efficiency and overall cardiac function were preserved in aged sEH null mice, although less robustly than in their young counterparts. While aged animals of both genotypes demonstrated a similar overall age-related decline, sEH deletion consistently demonstrated protection from myocardial ischemic injury regardless of age. CONCLUSION: Our data demonstrates the protection originating from sEH deletion in aged mice was markedly reduced compared to young animals, signifying unavoidable detrimental consequences of biological ageing on cardiac function.


Asunto(s)
Envejecimiento/genética , Epóxido Hidrolasas/deficiencia , Epóxido Hidrolasas/genética , Eliminación de Gen , Infarto del Miocardio/enzimología , Infarto del Miocardio/genética , Miocardio/metabolismo , Animales , Epóxido Hidrolasas/química , Corazón/fisiopatología , Ratones , Mitocondrias/enzimología , Mitocondrias/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA