Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 575(7783): 500-504, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723261

RESUMEN

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments1. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria2-4, the further fate of this C2 metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the ß-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago5. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.


Asunto(s)
Organismos Acuáticos/metabolismo , Ácido Aspártico/análogos & derivados , Glicolatos/metabolismo , Redes y Vías Metabólicas , Proteobacteria/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Aldehído-Liasas/metabolismo , Organismos Acuáticos/enzimología , Ácido Aspártico/metabolismo , Biocatálisis , Glioxilatos/metabolismo , Hidroliasas/metabolismo , Cinética , Oxidorreductasas/metabolismo , Fitoplancton/enzimología , Fitoplancton/metabolismo , Proteobacteria/enzimología , Transaminasas/metabolismo
2.
Metab Eng ; 76: 97-109, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731627

RESUMEN

Ethylene glycol (EG) is a promising next generation feedstock for bioprocesses. It is a key component of the ubiquitous plastic polyethylene terephthalate (PET) and other polyester fibers and plastics, used in antifreeze formulations, and can also be generated by electrochemical conversion of syngas, which makes EG a key compound in a circular bioeconomy. The majority of biotechnologically relevant bacteria assimilate EG via the glycerate pathway, a wasteful metabolic route that releases CO2 and requires reducing equivalents as well as ATP. In contrast, the recently characterized ß-hydroxyaspartate cycle (BHAC) provides a more efficient, carbon-conserving route for C2 assimilation. Here we aimed at overcoming the natural limitations of EG metabolism in the industrially relevant strain Pseudomonas putida KT2440 by replacing the native glycerate pathway with the BHAC. We first prototyped the core reaction sequence of the BHAC in Escherichia coli before establishing the complete four-enzyme BHAC in Pseudomonas putida. Directed evolution on EG resulted in an improved strain that exhibits 35% faster growth and 20% increased biomass yield compared to a recently reported P. putida strain that was evolved to grow on EG via the glycerate pathway. Genome sequencing and proteomics highlight plastic adaptations of the genetic and metabolic networks in response to the introduction of the BHAC into P. putida and identify key mutations for its further integration during evolution. Taken together, our study shows that the BHAC can be utilized as 'plug-and-play' module for the metabolic engineering of two important microbial platform organisms, paving the way for multiple applications for a more efficient and carbon-conserving upcycling of EG in the future.


Asunto(s)
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Plásticos/metabolismo , Glicol de Etileno/metabolismo , Tereftalatos Polietilenos/metabolismo , Carbono/metabolismo
3.
J Clin Med ; 12(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37109209

RESUMEN

BACKGROUND: Physical activity at high-altitudes is increasingly widespread, both for tourist trekking and for the growing tendency to carry out sports and training activities at high-altitudes. Acute exposure to this hypobaric-hypoxic condition induces several complex adaptive mechanisms involving the cardiovascular, respiratory and endocrine systems. A lack of these adaptive mechanisms in microcirculation may cause the onset of symptoms of acute mountain sickness, a frequent disturbance after acute exposure at high altitudes. The aim of our study was to evaluate the microcirculatory adaptive mechanisms at different altitudes, from 1350 to 5050 m a.s.l., during a scientific expedition in the Himalayas. METHODS: The main haematological parameters, blood viscosity and erythrocyte deformability were assessed at different altitudes on eight European lowlanders and on a group of eleven Nepalese highlanders. The microcirculation network was evaluated in vivo by conjunctival and periungual biomicroscopy. RESULTS: Europeans showed a progressive and significant reduction of blood filterability and an increase of whole blood viscosity which correlate with the increase of altitude (p < 0.02). In the Nepalese highlanders, haemorheological changes were already present at their residence altitude, 3400 m a.s.l. (p < 0.001 vs. Europeans). With the increase in altitude, a massive interstitial oedema appeared in all participants, associated with erythrocyte aggregation phenomena and slowing of the flow rate in the microcirculation. CONCLUSIONS: High altitude causes important and significant microcirculatory adaptations. These changes in microcirculation induced by hypobaric-hypoxic conditions should be considered when planning training and physical activity at altitude.

4.
J Clin Med ; 11(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35807128

RESUMEN

Background: Exposure to high altitudes determines several adaptive mechanisms affecting in a complex way the whole cardiovascular, respiratory, endocrine systems because of the hypobaric hypoxic condition. The aim of our study was to evaluate the circulatory adaptive mechanisms at high altitudes, during a scientific expedition in the Himalayas. Methods: Arterial distensibility was assessed measuring carotid-radial and carotid-femoral pulse wave velocity. Tests were carried out at several altitudes, from 1350 to 5050 m above sea level, on 8 lowlander European researchers and 11 highlander Nepalese porters. Results: In Europeans, systolic blood pressure and pulse pressure increased slightly but significantly with altitude (p < 0.05 and p < 0.001, respectively). Norepinephrine showed a significant increase after the lowlanders had spent some time at high altitude (p < 0.001). With increasing altitude, a progressive increase in carotid-radial and carotid-femoral pulse wave velocity values was observed in lowlanders, showing a particularly significant increase (p < 0.001) after staying at high altitude (carotid-radial pulse wave velocity, median value (interquartile range) from 9.2 (7.9−10.0) to 11.2 (10.9−11.8) m/s and carotid-femoral pulse wave velocity from 8.5 (7.9−9.0) to 11.3 (10.9−11.8) m/s). At high altitudes (3400 and 5050 m above sea level), no significant differences were observed between highlanders and lowlanders in hemodynamic parameters (blood pressure, carotid-radial and carotid-femoral pulse wave velocity). Conclusions: The progressive arterial stiffening with altitude observed in European lowlanders could explain the increase in systolic and pulse pressure values observed at high altitudes in this ethnic group. Further studies are needed to evaluate the role of aortic stiffening in the pathogenesis of acute mountain sickness.

5.
J Appl Physiol (1985) ; 125(3): 780-789, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29927733

RESUMEN

The physiological relevance of slow-wave vasomotion is still unclear, even though it has been hypothesized that it could be a compensatory mechanism for enhancing tissue oxygenation in conditions of reduced oxygen supply. The aim of our study was to explore the effects of hypoxia and ischemia on slow-wave vasomotion in microcirculation. Peripheral oxygen saturation and forearm microcirculation flow (laser-Doppler flowmetry) were recorded at baseline and during postocclusive reactive hyperemia in the Himalaya region from 8 European lowlanders (6 men; aged 29-39 yr) at 1,350, 3,400, and 5,050 m and from 10 Nepalese male highlanders (aged 21-39 yr) at 3,400 and 5,050 m of altitude. The same measurements were also performed at sea level in 16 healthy volunteers (aged 23-61 yr) during a short-term exposure to normobaric hypoxia. In lowlanders, exposure to progressively higher altitude under baseline flow conditions progressively increased 0.06-0.15 Hz vasomotion amplitude [power spectral density % was expressed as geometric means (geometric standard deviation) = 14.0 (3.6) at 1,350 m; 87.0(2.3) at 3,400 m and 249.8 (3.6) at 5,050 m; P = 0.006 and P < 0.001 vs. 1,350 m, respectively]. In highlanders, low frequency vasomotion amplitude was similarly enhanced at different altitudes [power spectral density % = 183.4 (4.1) at 3,400 m vs. 236.0 (3.0) at 5,050 m; P = 0.139]. In both groups at altitude, it was further increased after ischemic stimulus ( P < 0.001). At baseline, acute short lasting normobaric hypoxia did not induce low frequency vasomotion, which was conversely induced by ischemia, even under normal oxygenation and barometric pressure. This study offers the demonstration of a significant increase in slow-wave vasomotion under prolonged hypobaric-hypoxia exposure at high altitude, with a further enhancement after ischemia induction. NEW & NOTEWORTHY This study offers the demonstration in humans of the occurrence of enhanced slow-wave vasomotion in microcirculation induced by exposure to hypobaric hypoxia, ischemia, and their combination. This phenomenon, where vasomotion can be hypothesized to behave as a "peripheral heart," may represent a compensating adaptive change aimed at improving peripheral flow and tissue oxygenation in conditions of reduced oxygen supply, such as altitude-induced hypobaric hypoxia and postocclusion ischemia.


Asunto(s)
Altitud , Vasos Sanguíneos/fisiología , Hipoxia/fisiopatología , Isquemia/fisiopatología , Vasodilatación/fisiología , Adulto , Presión del Aire , Mal de Altura/fisiopatología , Voluntarios Sanos , Humanos , Masculino , Microcirculación , Persona de Mediana Edad , Oxígeno/sangre , Adulto Joven
6.
J Pediatr Endocrinol Metab ; 15(8): 1183-90, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12387517

RESUMEN

We investigated a possible influence on birth weight in Turner's syndrome of many clinical, hormonal, genetic and immunogenetic variables. We considered 97 patients with Turner's syndrome. Patients with parents with identical GM (Gamma heavy chains Marker) phenotype had a significantly lower birth weight than those with parents with different GM phenotype. Karyotype other than 45,X, HLA (Human Leukocyte Antigen) parental sharing, mother-patient compatibility and elevated 17-hydroxyprogesterone (17OHP) serum level after adrenocorticotropin hormone (ACTH) and absence of heart and kidney malformations and lymphedema were associated with a lower birth weight, but not significantly. Multiple interactions showed that the presence of an identical GM phenotype in parents, together with other conditions (karyotype other than 45,X, adrenal dysfunction, HLA parental sharing, mother-child compatibility, KM(3) [Kappa light chains Marker] phenotype) resulted in a further decrease of birth weight. These data might suggest a negative effect of genetic similarity on intrauterine growth in Turner's syndrome.


Asunto(s)
Peso al Nacer/genética , Antígenos HLA/genética , Cadenas gamma de Inmunoglobulina/genética , Padres , Síndrome de Turner/genética , 17-alfa-Hidroxiprogesterona/sangre , Hormona Adrenocorticotrópica , Orden de Nacimiento , Femenino , Edad Gestacional , Cardiopatías Congénitas/genética , Humanos , Cadenas kappa de Inmunoglobulina/genética , Recién Nacido , Italia , Riñón/anomalías , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA