Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(7): e2210712120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745808

RESUMEN

Whole-exome sequencing of Parkinson's disease (PD) patient DNA identified single-nucleotide polymorphisms (SNPs) in the tyrosine nonreceptor kinase-2 (TNK2) gene. Although this kinase had a previously demonstrated activity in preventing the endocytosis of the dopamine reuptake transporter (DAT), a causal role for TNK2-associated dysfunction in PD remains unresolved. We postulated the dopaminergic neurodegeneration resulting from patient-associated variants in TNK2 were a consequence of aberrant or prolonged TNK2 overactivity, the latter being a failure in TNK2 degradation by an E3 ubiquitin ligase, neuronal precursor cell-expressed developmentally down-regulated-4 (NEDD4). Interestingly, systemic RNA interference protein-3 (SID-3) is the sole TNK2 ortholog in the nematode Caenorhabditis elegans, where it is an established effector of epigenetic gene silencing mediated through the dsRNA-transporter, SID-1. We hypothesized that TNK2/SID-3 represents a node of integrated dopaminergic and epigenetic signaling essential to neuronal homeostasis. Use of a TNK2 inhibitor (AIM-100) or a NEDD4 activator [N-aryl benzimidazole 2 (NAB2)] in bioassays for either dopamine- or dsRNA-uptake into worm dopaminergic neurons revealed that sid-3 mutants displayed robust neuroprotection from 6-hydroxydopamine (6-OHDA) exposures, as did AIM-100 or NAB2-treated wild-type animals. Furthermore, NEDD4 activation by NAB2 in rat primary neurons correlated to a reduction in TNK2 levels and the attenuation of 6-OHDA neurotoxicity. CRISPR-edited nematodes engineered to endogenously express SID-3 variants analogous to TNK2 PD-associated SNPs exhibited enhanced susceptibility to dopaminergic neurodegeneration and circumvented the RNAi resistance characteristic of SID-3 dysfunction. This research exemplifies a molecular etiology for PD whereby dopaminergic and epigenetic signaling are coordinately regulated to confer susceptibility or resilience to neurodegeneration.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Oxidopamina , Neuroprotección/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/metabolismo , Epigénesis Genética , Modelos Animales de Enfermedad
2.
J Dev Biol ; 11(2)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37218814

RESUMEN

Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in adr-2 mutants, normally encoding the only catalytically active ADAR in Caenorhabditis elegans, ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of xdh-1, the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration. Further, RNAi experiments show that WHT-2, the worm ortholog of the human ABCG2 transporter and a predicted interactor of XDH-1, is the rate-limiting factor in the ADR-2, XDH-1, WHT-2 system for dopaminergic neuroprotection. In silico structural modeling of WHT-2 indicates that the editing of one nucleotide in the wht-2 mRNA leads to the substitution of threonine with alanine at residue 124 in the WHT-2 protein, changing hydrogen bonds in this region. Thus, we propose a model where wht-2 is edited by ADR-2, which promotes optimal export of uric acid, a known substrate of WHT-2 and a product of XDH-1 activity. In the absence of editing, uric acid export is limited, provoking a reduction in xdh-1 transcription to limit uric acid production and maintain cellular homeostasis. As a result, elevation of uric acid is protective against dopaminergic neuronal cell death. In turn, increased levels of uric acid are associated with a decrease in ROS production. Further, downregulation of xdh-1 is protective against PD pathologies because decreased levels of XDH-1 correlate to a concomitant reduction in xanthine oxidase (XO), the form of the protein whose by-product is superoxide anion. These data indicate that modifying specific targets of RNA editing may represent a promising therapeutic strategy for PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA