Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Retina ; 42(3): 456-464, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723902

RESUMEN

PURPOSE: To develop and validate an artificial intelligence framework for identifying multiple retinal lesions at image level and performing an explainable macular disease diagnosis at eye level in optical coherence tomography images. METHODS: A total of 26,815 optical coherence tomography images were collected from 865 eyes, and 9 retinal lesions and 3 macular diseases were labeled by ophthalmologists, including diabetic macular edema and dry/wet age-related macular degeneration. We applied deep learning to classify retinal lesions at image level and random forests to achieve an explainable disease diagnosis at eye level. The performance of the integrated two-stage framework was evaluated and compared with human experts. RESULTS: On testing data set of 2,480 optical coherence tomography images from 80 eyes, the deep learning model achieved an average area under curve of 0.978 (95% confidence interval, 0.971-0.983) for lesion classification. In addition, random forests performed accurate disease diagnosis with a 0% error rate, which achieved the same accuracy as one of the human experts and was better than the other three experts. It also revealed that the detection of specific lesions in the center of macular region had more contribution to macular disease diagnosis. CONCLUSION: The integrated method achieved high accuracy and interpretability in retinal lesion classification and macular disease diagnosis in optical coherence tomography images and could have the potential to facilitate the clinical diagnosis.


Asunto(s)
Inteligencia Artificial , Retinopatía Diabética/diagnóstico por imagen , Atrofia Geográfica/diagnóstico por imagen , Edema Macular/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Degeneración Macular Húmeda/diagnóstico por imagen , Adulto , Anciano , Retinopatía Diabética/clasificación , Femenino , Atrofia Geográfica/clasificación , Humanos , Edema Macular/clasificación , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , Degeneración Macular Húmeda/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA