Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Environ Sci Technol ; 58(36): 16087-16099, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39205652

RESUMEN

This study aims to fine-tune the plasma composition with a particular emphasis on reactive nitrogen species (RNS) including nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), and nitrous oxide (N2O), produced by a self-constructed cylindrical dielectric barrier discharge (CDBD). We demonstrated the effective manipulation of the plasma chemical profile by optimizing electrical properties, including the applied voltage and frequency, and by adjusting the nitrogen and oxygen ratios in the gas mixture. Additionally, quantification of these active species was achieved using Fourier transform infrared spectroscopy. The study further extends to exploring the aerosol polymerization of acrylamide (AM) into polyacrylamide (PAM), serving as a model reaction to evaluate the reactivity of different plasma-generated species, highlighting the significant role of NO2 in achieving high polymerization yields. Complementing our experimental data, molecular dynamics (MD) simulations, based on the ReaxFF reactive force field potential, explored the interactions between reactive oxygen species, specifically hydroxyl radicals (OH) and hydrogen peroxide (H2O2), with water molecules. Understanding these interactions, combined with the optimization of plasma chemistry, is crucial for enhancing the effectiveness of DBD plasma in environmental applications like air purification and water treatment.


Asunto(s)
Simulación de Dinámica Molecular , Óxido Nitroso , Especies de Nitrógeno Reactivo , Especies de Nitrógeno Reactivo/química , Óxido Nitroso/química , Gases em Plasma/química , Dióxido de Nitrógeno/química , Peróxido de Hidrógeno/química
2.
Int J Pharm ; 590: 119930, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33010394

RESUMEN

Large-pore mesoporous silica (LPMS) microspheres with tunable pore size have received intensive interest in the field of drug delivery due to their high storage capacity and fast delivery rate of drugs. In this work, a facile salt-assisted spray-drying method has been developed to fabricate LPMS microspheres using continuous spray-drying of simple inorganic salts as pore templates and colloidal SiO2 nanoparticles as building blocks, followed by washing with water to remove the templates. More importantly, the porosity of the LPMS microspheres can be finely tuned by adjusting the furnace temperature and relative concentration of the salt to SiO2, which could lead to optimal pharmaceutical outcomes. Then, the biological roles of these LPMS microspheres were evaluated in antibacterial and cancer therapy. In this regard, rhodamine b as a probe was initially loaded inside the LPMS microspheres. The obtained particles not only showed high entrapment efficiency (up to 30%) and a pH-responsive drug release but also presented pore-size-controlled drug release performance. Then, in vitro antibacterial activities of multiple antibiotics, namely nalidixic acid, chloramphenicol, and ciprofloxacin, loaded in the LPMS particles were investigated against two pathogenic bacteria, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The results indicated bacterial inhibition up to 70% and 20% in less than 2 h for Escherichia coli and Staphylococcus aureus, respectively. This inhibition of bacterial growth was accompanied by no bacterial regrowth within 30 h. Finally, the versatility of LPMS microspheres as drug carriers in pancreatic cancer treatment was explored. In this regard, a pro-apoptotic NCL antagonist agent (N6L) as an antitumor agent was successfully loaded onto LPMS microspheres. Interestingly, the resulting particles showed pore-size-dependent anticancer activity with inhibition of cancer cell growth up to 60%.


Asunto(s)
Neoplasias Pancreáticas , Dióxido de Silicio , Antibacterianos/farmacología , Composición de Medicamentos , Humanos , Microesferas , Neoplasias Pancreáticas/tratamiento farmacológico , Tamaño de la Partícula , Porosidad
3.
ACS Appl Mater Interfaces ; 12(6): 6885-6898, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31967774

RESUMEN

Hollow mesoporous silica microsphere (HMSM) particles are one of the most promising vehicles for efficient drug delivery owing to their large hollow interior cavity for drug loading and the permeable mesoporous shell for controlled drug release. Here, we report an easily controllable aerosol-based approach to produce HMSM particles by continuous spray-drying of colloidal silica nanoparticles and Eudragit/Triton X100 composite (EUT) nanospheres as templates, followed by template removal. Importantly, the internal structure of the hollow cavity and the external morphology and the porosity of the mesoporous shell can be tuned to a certain extent by adjusting the experimental conditions (i.e., silica to EUT mass ratio and particle size of silica nanoparticles) to optimize the drug loading capacity and the controlled-release properties. Then, the application of aerosol-synthesized HMSM particles in controlled drug delivery was investigated by loading amoxicillin as an antibiotic compound with high entrapment efficiency (up to 46%). Furthermore, to improve the biocompatibility of the amoxicillin-loaded HMSM particles, their surfaces were functionalized with poly(allylamine hydrochloride) and alginate as biocompatible polymers via the layer-by-layer assembly. The resulting particles were evaluated toward Escherichia coli (Gram-negative) bacteria and indicated the bacterial inhibition up to 90% in less than 2 h. Finally, we explored the versatility of HMSMs as drug carriers for pancreatic cancer treatment. Because the pH value of the extracellular medium in pancreatic tumors is lower than that of the healthy tissue, chitosan as a pH-sensitive gatekeeper was grafted to the HMSM surface and then loaded with a pro-apoptotic NCL antagonist agent (N6L) as an anticancer drug. The obtained particles exhibited pH-responsive drug releases and excellent anticancer activities with inhibition of cancer cell growth up to 60%.


Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Preparaciones de Acción Retardada/química , Portadores de Fármacos/síntesis química , Sistemas de Liberación de Medicamentos/instrumentación , Dióxido de Silicio/química , Aerosoles/química , Antibacterianos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Escherichia coli/efectos de los fármacos , Humanos , Microesferas , Nanopartículas/química , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/síntesis química
4.
Talanta ; 115: 271-6, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24054591

RESUMEN

A novel Eu(3+)-sensitive fluorescent chemosensor is introduced. It is based on magnetic core-shell silica nanoparticle which is functionalized by Cinchonidine (CD-Fe3O4@SiO2). The nano-chemosensor was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible absorption and fluorescence emission. The fluorescent nano-chemosensor shows a selective interaction with Eu(3+) ion. Fluorescence studies revealed that the emission intensity of the functionalized magnetic core-shell silica nanoparticles (CD-Fe3O4@SiO2 NPs) increases significantly by addition of various concentrations of Eu(3+) ion. While in case of mono, di, and other trivalent cations, weak changes or either no changes in intensity were observed. The enhancement in fluorescence intensity of nano-chemosensor is because of the strong covalent binding of Eu(3+) ion to CD-Fe3O4@SiO2 NPs with a large binding constant value of 1.7 × 10(5) mol L(-1).


Asunto(s)
Alcaloides de Cinchona/química , Europio/análisis , Óxido Ferrosoférrico/química , Nanopartículas de Magnetita/química , Dióxido de Silicio/química , Nanopartículas de Magnetita/ultraestructura , Imanes , Microscopía Electrónica de Transmisión , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA