Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Endocrinol ; 263(1)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39013412

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like-peptide-1 (GLP-1) are incretin hormones that stimulate insulin secretion and improve glycemic control in individuals with type 2 diabetes (T2D). Data from several cardiovascular outcome trials for GLP-1 receptor (GLP-1R) agonists have demonstrated significant reductions in the occurrence of major adverse cardiovascular events in individuals with T2D. Although the cardiovascular actions attributed to GLP-1R agonism have been extensively studied, little is known regarding the cardiovascular consequences attributed to GIP receptor (GIPR) agonism. As there is now an increasing focus on the development of incretin-based co-agonist therapies that activate both the GLP-1R and GIPR, it is imperative that we understand the mechanism(s) through which these incretins impact cardiovascular function. This is especially important considering that cardiovascular disease represents the leading cause of death in individuals with T2D. With increasing evidence that perturbations in cardiac energy metabolism are a major contributor to the pathology of diabetes-related cardiovascular disease, this may represent a key component through which GLP-1R and GIPR agonism influence cardiovascular outcomes. Not only do GIP and GLP-1 increase the secretion of insulin, they may also modify glucagon secretion, both of which have potent actions on cardiac substrate utilization. Herein we will discuss the potential direct and indirect actions through which GLP-1R and GIPR agonism impact cardiac energy metabolism while interrogating the evidence to support whether such actions may account for incretin-mediated cardioprotection in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metabolismo Energético , Incretinas , Humanos , Incretinas/uso terapéutico , Incretinas/farmacología , Incretinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polipéptido Inhibidor Gástrico/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Corazón/efectos de los fármacos , Enfermedades Cardiovasculares/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de la Hormona Gastrointestinal/agonistas , Péptido 1 Similar al Glucagón/metabolismo , Miocardio/metabolismo
2.
Cell Rep ; 43(8): 114573, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39093701

RESUMEN

Growth differentiation factor 15 (GDF15) is a peptide with utility in obesity, as it decreases appetite and promotes weight loss. Because obesity increases the risk for type 2 diabetes (T2D) and cardiovascular disease, it is imperative to understand the cardiovascular actions of GDF15, especially since elevated GDF15 levels are an established biomarker for heart failure. As weight loss should be encouraged in the early stages of obesity-related prediabetes/T2D, where diabetic cardiomyopathy is often present, we assessed whether treatment with GDF15 influences its pathology. We observed that GDF15 treatment alleviates diastolic dysfunction in mice with T2D independent of weight loss. This cardioprotection was associated with a reduction in cardiac inflammation, which was likely mediated via indirect actions, as direct treatment of adult mouse cardiomyocytes and differentiated THP-1 human macrophages with GDF15 failed to alleviate lipopolysaccharide-induced inflammation. Therapeutic manipulation of GDF15 action may thus have utility for both obesity and diabetic cardiomyopathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA