Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Rev ; 74(1): 141-206, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35017176

RESUMEN

The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.


Asunto(s)
Descubrimiento de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos , Humanos , Estudios Multicéntricos como Asunto
2.
Opt Express ; 21(18): 21293-8, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24104003

RESUMEN

We present a novel integration method for packaging silicon photonic sensors with polymer microfluidics, designed to be suitable for wafer-level production methods. The method addresses the previously unmet manufacturing challenges of matching the microfluidic footprint area to that of the photonics, and of robust bonding of microfluidic layers to biofunctionalized surfaces. We demonstrate the fabrication, in a single step, of a microfluidic layer in the recently introduced OSTE polymer, and the subsequent unassisted dry bonding of the microfluidic layer to a grating coupled silicon photonic ring resonator sensor chip. The microfluidic layer features photopatterned through holes (vias) for optical fiber probing and fluid connections, as well as molded microchannels and tube connectors, and is manufactured and subsequently bonded to a silicon sensor chip in less than 10 minutes. Combining this new microfluidic packaging method with photonic waveguide surface gratings for light coupling allows matching the size scale of microfluidics to that of current silicon photonic biosensors. To demonstrate the new method, we performed successful refractive index measurements of liquid ethanol and methanol samples, using the fabricated device. The minimum required sample volume for refractive index measurement is below one nanoliter.

3.
PLoS One ; 11(12): e0166330, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27935976

RESUMEN

This paper demonstrates flexible and stretchable microneedle patches that combine soft and flexible base substrates with hard and sharp stainless steel microneedles. An elastomeric polymer base enables conformal contact between the microneedle patch and the complex topography and texture of the underlying skin, while robust and sharp stainless steel microneedles reliably pierce the outer layers of the skin. The flexible microneedle patches have been realized by magnetically assembling short stainless steel microneedles into a flexible polymer supporting base. In our experimental investigation, the microneedle patches were applied to human skin and an excellent adaptation of the patch to the wrinkles and deformations of the skin was verified, while at the same time the microneedles reliably penetrate the surface of the skin. The unobtrusive flexible and stretchable microneedle patches have great potential for transdermal biointerfacing in a variety of emerging applications such as transdermal drug delivery, bioelectric treatments and wearable bio-electronics for health and fitness monitoring.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Agujas , Acero Inoxidable , Parche Transdérmico , Administración Cutánea , Adulto , Sistemas de Liberación de Medicamentos/métodos , Módulo de Elasticidad , Humanos , Masculino , Fenómenos Mecánicos , Microinyecciones/instrumentación , Microinyecciones/métodos , Polímeros/metabolismo , Piel/metabolismo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA