Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(9): e3002314, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37747886

RESUMEN

The brain is composed of disparate neural populations that communicate and interact with one another. Although fiber bundles, similarities in molecular architecture, and synchronized neural activity all reflect how brain regions potentially interact with one another, a comprehensive study of how all these interregional relationships jointly reflect brain structure and function remains missing. Here, we systematically integrate 7 multimodal, multiscale types of interregional similarity ("connectivity modes") derived from gene expression, neurotransmitter receptor density, cellular morphology, glucose metabolism, haemodynamic activity, and electrophysiology in humans. We first show that for all connectivity modes, feature similarity decreases with distance and increases when regions are structurally connected. Next, we show that connectivity modes exhibit unique and diverse connection patterns, hub profiles, spatial gradients, and modular organization. Throughout, we observe a consistent primacy of molecular connectivity modes-namely correlated gene expression and receptor similarity-that map onto multiple phenomena, including the rich club and patterns of abnormal cortical thickness across 13 neurological, psychiatric, and neurodevelopmental disorders. Finally, to construct a single multimodal wiring map of the human cortex, we fuse all 7 connectivity modes and show that the fused network maps onto major organizational features of the cortex including structural connectivity, intrinsic functional networks, and cytoarchitectonic classes. Altogether, this work contributes to the integrative study of interregional relationships in the human cerebral cortex.

2.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38527807

RESUMEN

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.


Asunto(s)
Encéfalo , Red Nerviosa , Humanos , Masculino , Femenino , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética , Atención/fisiología , Adulto Joven , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Memoria a Largo Plazo/fisiología , Mapeo Encefálico/métodos , Lóbulo Parietal/fisiología , Memoria a Corto Plazo/fisiología
3.
Nat Methods ; 19(11): 1472-1479, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36203018

RESUMEN

Imaging technologies are increasingly used to generate high-resolution reference maps of brain structure and function. Comparing experimentally generated maps to these reference maps facilitates cross-disciplinary scientific discovery. Although recent data sharing initiatives increase the accessibility of brain maps, data are often shared in disparate coordinate systems, precluding systematic and accurate comparisons. Here we introduce neuromaps, a toolbox for accessing, transforming and analyzing structural and functional brain annotations. We implement functionalities for generating high-quality transformations between four standard coordinate systems. The toolbox includes curated reference maps and biological ontologies of the human brain, such as molecular, microstructural, electrophysiological, developmental and functional ontologies. Robust quantitative assessment of map-to-map similarity is enabled via a suite of spatial autocorrelation-preserving null models. neuromaps combines open-access data with transparent functionality for standardizing and comparing brain maps, providing a systematic workflow for comprehensive structural and functional annotation enrichment analysis of the human brain.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Mapeo Encefálico/métodos , Encéfalo/fisiología
4.
Mol Psychiatry ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266711

RESUMEN

The psychosis spectrum encompasses a heterogeneous range of clinical conditions associated with abnormal brain development. Detecting patterns of atypical neuroanatomical maturation across psychiatric disorders requires an interpretable metric standardized by age-, sex- and site-effect. The molecular and micro-architectural attributes that account for these deviations in brain structure from typical neurodevelopment are still unknown. Here, we aggregate structural magnetic resonance imaging data from 38,696 healthy controls (HC) and 1256 psychosis-related conditions, including first-degree relatives of schizophrenia (SCZ) and schizoaffective disorder (SAD) patients (n = 160), individuals who had psychotic experiences (n = 157), patients who experienced a first episode of psychosis (FEP, n = 352), and individuals with chronic SCZ or SAD (n = 587). Using a normative modeling approach, we generated centile scores for cortical gray matter (GM) phenotypes, identifying deviations in regional volumes below the expected trajectory for all conditions, with a greater impact on the clinically diagnosed ones, FEP and chronic. Additionally, we mapped 46 neurobiological features from healthy individuals (including neurotransmitters, cell types, layer thickness, microstructure, cortical expansion, and metabolism) to these abnormal centiles using a multivariate approach. Results revealed that neurobiological features were highly co-localized with centile deviations, where metabolism (e.g., cerebral metabolic rate of oxygen (CMRGlu) and cerebral blood flow (CBF)) and neurotransmitter concentrations (e.g., serotonin (5-HT) and acetylcholine (α4ß2) receptors) showed the most consistent spatial overlap with abnormal GM trajectories. Taken together these findings shed light on the vulnerability factors that may underlie atypical brain maturation during different stages of psychosis.

5.
PLoS Biol ; 20(8): e3001735, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35914002

RESUMEN

Whole-brain neural communication is typically estimated from statistical associations among electromagnetic or haemodynamic time-series. The relationship between functional network architectures recovered from these 2 types of neural activity remains unknown. Here, we map electromagnetic networks (measured using magnetoencephalography (MEG)) to haemodynamic networks (measured using functional magnetic resonance imaging (fMRI)). We find that the relationship between the 2 modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison with the BigBrain histological atlas reveals that electromagnetic-haemodynamic coupling is driven by laminar differentiation and neuron density, suggesting that the mapping between the 2 modalities can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be explained by electromagnetic activity in a single frequency band, but rather arises from the mixing of multiple neurophysiological rhythms. Correspondence between the two is largely driven by MEG functional connectivity at the beta (15 to 29 Hz) frequency band. Collectively, these findings demonstrate highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional networks, opening fundamentally new avenues for studying the relationship between cortical microarchitecture and multimodal connectivity patterns.


Asunto(s)
Mapeo Encefálico , Magnetoencefalografía , Encéfalo/fisiología , Mapeo Encefálico/métodos , Fenómenos Electromagnéticos , Hemodinámica , Humanos , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía/métodos
6.
Brain ; 147(7): 2483-2495, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701342

RESUMEN

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.


Asunto(s)
Lobectomía Temporal Anterior , Conectoma , Epilepsia del Lóbulo Temporal , Lóbulo Temporal , Humanos , Femenino , Masculino , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Lóbulo Temporal/patología , Lóbulo Temporal/cirugía , Lóbulo Temporal/diagnóstico por imagen , Lobectomía Temporal Anterior/métodos , Persona de Mediana Edad , Adulto Joven , Imagen de Difusión Tensora , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/patología
7.
Hum Brain Mapp ; 45(2): e26570, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339908

RESUMEN

Head motion correction is particularly challenging in diffusion-weighted MRI (dMRI) scans due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL's Eddy. Recently, the 3dSHORE-based SHORELine method was introduced that does not require shell-based acquisitions, but it has not been previously benchmarked. Here we perform a comprehensive evaluation of both methods on realistic simulations of a software fiber phantom that provides known ground-truth head motion. We demonstrate that both methods perform remarkably well, but that performance can be impacted by sampling scheme and the extent of head motion and the denoising strategy applied before head motion correction. Furthermore, we find Eddy benefits from denoising the data first with MP-PCA. In sum, we provide the most extensive known benchmarking of dMRI head motion correction, together with extensive simulation data and a reproducible workflow. PRACTITIONER POINTS: Both Eddy and SHORELine head motion correction methods performed quite well on a large variety of simulated data. Denoising with MP-PCA can improve head motion correction performance when Eddy is used. SHORELine effectively corrects motion in non-shelled diffusion spectrum imaging data.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Movimiento (Física) , Simulación por Computador , Encéfalo/diagnóstico por imagen , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
8.
Brain ; 146(1): 321-336, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35188955

RESUMEN

Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.


Asunto(s)
Conectoma , Demencia Frontotemporal , Enfermedad de Pick , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Transcriptoma , Encéfalo/patología , Enfermedad de Pick/patología , Atrofia/patología , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
9.
Neuroimage ; 278: 120276, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451374

RESUMEN

The relationship between structural and functional connectivity in the brain is a key question in connectomics. Here we quantify patterns of structure-function coupling across the neocortex, by comparing structural connectivity estimated using diffusion MRI with functional connectivity estimated using both neurophysiological (MEG-based) and haemodynamic (fMRI-based) recordings. We find that structure-function coupling is heterogeneous across brain regions and frequency bands. The link between structural and functional connectivity is generally stronger in multiple MEG frequency bands compared to resting state fMRI. Structure-function coupling is greater in slower and intermediate frequency bands compared to faster frequency bands. We also find that structure-function coupling systematically follows the archetypal sensorimotor-association hierarchy, as well as patterns of laminar differentiation, peaking in granular layer IV. Finally, structure-function coupling is better explained using structure-informed inter-regional communication metrics than using structural connectivity alone. Collectively, these results place neurophysiological and haemodynamic structure-function relationships in a common frame of reference and provide a starting point for a multi-modal understanding of structure-function coupling in the brain.


Asunto(s)
Conectoma , Neocórtex , Humanos , Magnetoencefalografía/métodos , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Conectoma/métodos , Hemodinámica , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
10.
Proc Natl Acad Sci U S A ; 116(42): 21219-21227, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570622

RESUMEN

The white matter architecture of the brain imparts a distinct signature on neuronal coactivation patterns. Interregional projections promote synchrony among distant neuronal populations, giving rise to richly patterned functional networks. A variety of statistical, communication, and biophysical models have been proposed to study the relationship between brain structure and function, but the link is not yet known. In the present report we seek to relate the structural and functional connection profiles of individual brain areas. We apply a simple multilinear model that incorporates information about spatial proximity, routing, and diffusion between brain regions to predict their functional connectivity. We find that structure-function relationships vary markedly across the neocortex. Structure and function correspond closely in unimodal, primary sensory, and motor regions, but diverge in transmodal cortex, particularly the default mode and salience networks. The divergence between structure and function systematically follows functional and cytoarchitectonic hierarchies. Altogether, the present results demonstrate that structural and functional networks do not align uniformly across the brain, but gradually uncouple in higher-order polysensory areas.


Asunto(s)
Neocórtex/fisiología , Vías Nerviosas/fisiología , Adulto , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Neurológicos , Sustancia Blanca/fisiología
11.
Cereb Cortex ; 29(1): 397-409, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30357316

RESUMEN

Dopaminergic projections are hypothesized to stabilize neural signaling and neural representations, but how they shape regional information processing and large-scale network interactions remains unclear. Here we investigated effects of lowered dopamine levels on within-region temporal signal variability (measured by sample entropy) and between-region functional connectivity (measured by pairwise temporal correlations) in the healthy brain at rest. The acute phenylalanine and tyrosine depletion (APTD) method was used to decrease dopamine synthesis in 51 healthy participants who underwent resting-state functional MRI (fMRI) scanning. Functional connectivity and regional signal variability were estimated for each participant. Multivariate partial least squares (PLS) analysis was used to statistically assess changes in signal variability following APTD as compared with the balanced control treatment. The analysis captured a pattern of increased regional signal variability following dopamine depletion. Changes in hemodynamic signal variability were concomitant with changes in functional connectivity, such that nodes with greatest increase in signal variability following dopamine depletion also experienced greatest decrease in functional connectivity. Our results suggest that dopamine may act to stabilize neural signaling, particularly in networks related to motor function and orienting attention towards behaviorally-relevant stimuli. Moreover, dopamine-dependent signal variability is critically associated with functional embedding of individual areas in large-scale networks.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Corteza Motora/metabolismo , Red Nerviosa/metabolismo , Corteza Somatosensorial/metabolismo , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Corteza Motora/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Corteza Somatosensorial/diagnóstico por imagen , Adulto Joven
12.
Biol Psychiatry ; 96(6): 486-494, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460580

RESUMEN

BACKGROUND: Symptoms of borderline personality disorder (BPD) often manifest during adolescence, but the underlying relationship between these debilitating symptoms and the development of functional brain networks is not well understood. Here, we aimed to investigate how multivariate patterns of functional connectivity are associated with borderline personality traits in large samples of young adults and adolescents. METHODS: We used functional magnetic resonance imaging data from young adults and adolescents from the HCP-YA (Human Connectome Project Young Adult) (n = 870, ages 22-37 years, 457 female) and the HCP-D (Human Connectome Project Development) (n = 223, ages 16-21 years, 121 female). A previously validated BPD proxy score was derived from the NEO Five-Factor Inventory. A ridge regression model with cross-validation and nested hyperparameter tuning was trained and tested in HCP-YA to predict BPD scores in unseen data from regional functional connectivity. The trained model was further tested on data from HCP-D without further tuning. Finally, we tested how the connectivity patterns associated with BPD aligned with age-related changes in connectivity. RESULTS: Multivariate functional connectivity patterns significantly predicted out-of-sample BPD scores in unseen data in young adults (HCP-YA ppermuted = .001) and older adolescents (HCP-D ppermuted = .001). Regional predictive capacity was heterogeneous; the most predictive regions were found in functional systems relevant for emotion regulation and executive function, including the ventral attention network. Finally, regional functional connectivity patterns that predicted BPD scores aligned with those associated with development in youth. CONCLUSIONS: Individual differences in functional connectivity in developmentally sensitive regions are associated with borderline personality traits.


Asunto(s)
Trastorno de Personalidad Limítrofe , Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Trastorno de Personalidad Limítrofe/fisiopatología , Trastorno de Personalidad Limítrofe/diagnóstico por imagen , Femenino , Adulto Joven , Adulto , Masculino , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología
13.
bioRxiv ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39386637

RESUMEN

Background: A key step towards understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organization at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organization of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex. Aims: We aimed to evaluate the impact of sex on the spatial organization of person-specific functional brain networks. Method: We leveraged person-specific atlases of functional brain networks defined using nonnegative matrix factorization in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalized additive models to uncover associations between sex and the spatial layout ("topography") of personalized functional networks (PFNs). Next, we trained support vector machines to classify participants' sex from multivariate patterns of PFN topography. Finally, we leveraged transcriptomic data from the Allen Human Brain Atlas to evaluate spatial correlations between sex differences in PFN topography and gene expression. Results: Sex differences in PFN topography were greatest in association networks including the fronto-parietal, ventral attention, and default mode networks. Machine learning models trained on participants' PFNs were able to classify participant sex with high accuracy. Brain regions with the greatest sex differences in PFN topography were enriched in expression of X-linked genes as well as genes expressed in astrocytes and excitatory neurons. Conclusions: Sex differences in PFN topography are robust, replicate across large-scale samples of youth, and are associated with expression patterns of X-linked genes. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.

14.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747831

RESUMEN

Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6 800 timeseries features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is colocalized with multiple micro-architectural features, including genomic gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.

15.
Nat Commun ; 14(1): 6000, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752115

RESUMEN

Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6800 time-series features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-localized with multiple micro-architectural features, including gene expression gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/fisiología , Magnetoencefalografía , Neurofisiología , Receptores de Neurotransmisores
16.
Neuroimage Clin ; 40: 103523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38016407

RESUMEN

Parkinson's disease pathology is hypothesized to spread through the brain via axonal connections between regions and is further modulated by local vulnerabilities within those regions. The resulting changes to brain morphology have previously been demonstrated in both prodromal and de novo Parkinson's disease patients. However, it remains unclear whether the pattern of atrophy progression in Parkinson's disease over time is similarly explained by network-based spreading and local vulnerability. We address this gap by mapping the trajectory of cortical atrophy rates in a large, multi-centre cohort of Parkinson's disease patients and relate this atrophy progression pattern to network architecture and gene expression profiles. Across 4-year follow-up visits, increased atrophy rates were observed in posterior, temporal, and superior frontal cortices. We demonstrated that this progression pattern was shaped by network connectivity. Regional atrophy rates were strongly related to atrophy rates across structurally and functionally connected regions. We also found that atrophy progression was associated with specific gene expression profiles. The genes whose spatial distribution in the brain was most related to atrophy rate were those enriched for mitochondrial and metabolic function. Taken together, our findings demonstrate that both global and local brain features influence vulnerability to neurodegeneration in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/complicaciones , Transcriptoma , Encéfalo , Perfilación de la Expresión Génica , Atrofia/patología , Imagen por Resonancia Magnética/métodos , Progresión de la Enfermedad
17.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662311

RESUMEN

Background |: Symptoms of borderline personality disorder (BPD) often manifest in adolescence, yet the underlying relationship between these debilitating symptoms and the development of functional brain networks is not well understood. Here we aimed to investigate how multivariate patterns of functional connectivity are associated with symptoms of BPD in a large sample of young adults and adolescents. Methods |: We used high-quality functional Magnetic Resonance Imaging (fMRI) data from young adults from the Human Connectome Project: Young Adults (HCP-YA; N = 870, ages 22-37 years, 457 female) and youth from the Human Connectome Project: Development (HCP-D; N = 223, age range 16-21 years, 121 female). A previously validated BPD proxy score was derived from the NEO Five Factor Inventory (NEO-FFI). A ridge regression model with 10-fold cross-validation and nested hyperparameter tuning was trained and tested in HCP-YA to predict BPD scores in unseen data from regional functional connectivity, while controlling for in-scanner motion, age, and sex. The trained model was further tested on data from HCP-D without further tuning. Finally, we tested how the connectivity patterns associated with BPD aligned with age-related changes in connectivity. Results |: Multivariate functional connectivity patterns significantly predicted out-of-sample BPD proxy scores in unseen data in both young adults (HCP-YA; pperm = 0.001) and older adolescents (HCP-D; pperm = 0.001). Predictive capacity of regions was heterogeneous; the most predictive regions were found in functional systems relevant for emotion regulation and executive function, including the ventral attention network. Finally, regional functional connectivity patterns that predicted BPD proxy scores aligned with those associated with development in youth. Conclusion |: Individual differences in functional connectivity in developmentally-sensitive regions are associated with the symptoms of BPD.

18.
Netw Neurosci ; 7(3): 1206-1227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781144

RESUMEN

Systematic changes have been observed in the functional architecture of the human brain with advancing age. However, functional connectivity (FC) is also a powerful feature to detect unique "connectome fingerprints," allowing identification of individuals among their peers. Although fingerprinting has been robustly observed in samples of young adults, the reliability of this approach has not been demonstrated across the lifespan. We applied the fingerprinting framework to the Cambridge Centre for Ageing and Neuroscience cohort (n = 483 aged 18 to 89 years). We found that individuals are "fingerprintable" (i.e., identifiable) across independent functional MRI scans throughout the lifespan. We observed a U-shape distribution in the strength of "self-identifiability" (within-individual correlation across modalities), and "others-identifiability" (between-individual correlation across modalities), with a decrease from early adulthood into middle age, before improving in older age. FC edges contributing to self-identifiability were not restricted to specific brain networks and were different between individuals across the lifespan sample. Self-identifiability was additionally associated with regional brain volume. These findings indicate that individual participant-level identification is preserved across the lifespan despite the fact that its components are changing nonlinearly.

19.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045258

RESUMEN

Functional neuroimaging is an essential tool for neuroscience research. Pre-processing pipelines produce standardized, minimally pre-processed data to support a range of potential analyses. However, post-processing is not similarly standardized. While several options for post-processing exist, they tend not to support output from disparate pre-processing pipelines, may have limited documentation, and may not follow BIDS best practices. Here we present XCP-D, which presents a solution to these issues. XCP-D is a collaborative effort between PennLINC at the University of Pennsylvania and the DCAN lab at the University at Minnesota. XCP-D uses an open development model on GitHub and incorporates continuous integration testing; it is distributed as a Docker container or Singularity image. XCP-D generates denoised BOLD images and functional derivatives from resting-state data in either NifTI or CIFTI files, following pre-processing with fMRIPrep, HCP, and ABCD-BIDS pipelines. Even prior to its official release, XCP-D has been downloaded >3,000 times from DockerHub. Together, XCP-D facilitates robust, scalable, and reproducible post-processing of fMRI data.

20.
Dev Cogn Neurosci ; 62: 101265, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37327696

RESUMEN

Delay discounting is a measure of impulsive choice relevant in adolescence as it predicts many real-life outcomes, including obesity and academic achievement. However, resting-state functional networks underlying individual differences in delay discounting during youth remain incompletely described. Here we investigate the association between multivariate patterns of functional connectivity and individual differences in impulsive choice in a large sample of children, adolescents, and adults. A total of 293 participants (9-23 years) completed a delay discounting task and underwent 3T resting-state fMRI. A connectome-wide analysis using multivariate distance-based matrix regression was used to examine whole-brain relationships between delay discounting and functional connectivity. These analyses revealed that individual differences in delay discounting were associated with patterns of connectivity emanating from the left dorsal prefrontal cortex, a default mode network hub. Greater delay discounting was associated with greater functional connectivity between the dorsal prefrontal cortex and other default mode network regions, but reduced connectivity with regions in the dorsal and ventral attention networks. These results suggest delay discounting in children, adolescents, and adults is associated with individual differences in relationships both within the default mode network and between the default mode and networks involved in attentional and cognitive control.


Asunto(s)
Conectoma , Descuento por Demora , Humanos , Adulto , Adolescente , Niño , Individualidad , Mapeo Encefálico/métodos , Corteza Prefrontal , Encéfalo , Imagen por Resonancia Magnética , Vías Nerviosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA