Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chem Res Toxicol ; 24(12): 2227-36, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-21916491

RESUMEN

Previously, we established that 11(R)-hydroxy-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (HETE) was a significant cyclooxygenase (COX)-2-derived arachidonic acid (AA) metabolite in epithelial cells. Stable isotope dilution chiral liquid chromatography (LC)-electron capture atmospheric pressure chemical ionization (ECAPCI)/mass spectrometry (MS) was used to quantify COX-2-derived eicosanoids in the human colorectal adenocarcinoma (LoVo) epithelial cell line, which expresses both COX-2 and 15-hydroxyprostaglandin dehydrogenase (15-PGDH). 11(R)-HETE secretion reached peak concentrations within minutes after AA addition before rapidly diminishing, suggesting further metabolism had occurred. Surprisingly, recombinant 15-PGDH, which is normally specific for oxidation of eicosanoid 15(S)-hydroxyl groups, was found to convert 11(R)-HETE to 11-oxo-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (ETE). Furthermore, LoVo cell lysates converted 11(R)-HETE to 11-oxo-ETE and inhibition of 15-PGDH with 5-[[4-(ethoxycarbonyl)phenyl]azo]-2-hydroxy-benzeneacetic acid (CAY10397) (50 µM) significantly suppressed endogenous 11-oxo-ETE production with a corresponding increase in 11(R)-HETE. These data confirmed COX-2 and 15-PGDH as enzymes responsible for 11-oxo-ETE biosynthesis. Finally, addition of AA to the LoVo cells resulted in rapid secretion of 11-oxo-ETE into the media, reaching peak levels within 20 min of starting the incubation. This was followed by a sharp decrease in 11-oxo-ETE levels. Glutathione (GSH) S-transferase (GST) was found to metabolize 11-oxo-ETE to the 11-oxo-ETE-GSH (OEG)-adduct in LoVo cells, as confirmed by LC-MS/MS analysis. Bromodeoxyuridine (BrdU)-based cell proliferation assays in human umbilical vein endothelial cells (HUVECs) revealed that the half-maximal inhibitory concentration (IC(50)) of 11-oxo-ETE for inhibition of HUVEC proliferation was 2.1 µM. These results show that 11-oxo-ETE is a novel COX-2/15-PGDH-derived eicosanoid, which inhibits endothelial cell proliferation with a potency that is similar to that observed for 15d-PGJ(2).


Asunto(s)
Antineoplásicos/química , Antineoplásicos/toxicidad , Ácidos Araquidónicos/biosíntesis , Ciclooxigenasa 2/metabolismo , Eicosanoides/química , Eicosanoides/toxicidad , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Antineoplásicos/metabolismo , Ácido Araquidónico/química , Ácido Araquidónico/metabolismo , Ácidos Araquidónicos/química , Ácidos Araquidónicos/toxicidad , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Eicosanoides/biosíntesis , Glutatión Transferasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Hidroxiprostaglandina Deshidrogenasas/genética , Espectrometría de Masas , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo
2.
Rapid Commun Mass Spectrom ; 25(9): 1297-307, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21488127

RESUMEN

An ultrasensitive stable isotope dilution liquid chromatography/selected reaction monitoring/mass spectrometry (LC/SRM/MS) assay has been developed for serum estrone, 16α-hydroxyestrone, 4-methoxyestrone, and 2- methoxyestrone. The enhanced sensitivity was obtained by the use of Girard P (GP) pre-ionized derivatives coupled with microflow LC. The limit of detection for each estrogen using 0.5 mL of serum was 0.156 pg/mL and linear standard curves were obtained up to 20 pg/mL. Serum samples from 20 postmenopausal women (10 lifetime non-smokers and 10 current smokers) were analyzed using this new assay. Mean serum concentrations of estrone and 2-methoxyestrone were 14.06 pg/mL (±1.56 pg/mL) and 3.30 pg/mL (±1.00 pg/mL), respectively, for the 20 subjects enrolled in the study. The mean estrone concentration determined by our ultrasensitive and highly specific assay was significantly lower than that reported for the control groups in most previous breast cancer studies of postmenopausal women. In addition (and contrary to many reports) serum 16α-hydroxyestrone was not detected in any of the subjects, and 4-methoxyestrone was detected in only one of the subjects. Furthermore, there were no significant differences in the mean serum concentrations of estrone and 2-methoxyestrone or the ratio of serum 2- methoxyestrone to estrone between the non-smoking and smoking groups. Interestingly, the one subject with measurable serum 4-methoxyestrone (2.3 pg/mL) had the lowest estrone and 2-methoxyestrone concentrations. Using this assay it will now be possible to obtain definitive information on the levels of serum estrone, 4-methoxyestrone, and 2-methoxyestrone in studies of cancer risk using small serum volumes available from previous epidemiology studies.


Asunto(s)
Cromatografía Liquida/métodos , Estrona/análogos & derivados , Estrona/sangre , Espectrometría de Masas/métodos , Posmenopausia/sangre , Estudios de Casos y Controles , Estabilidad de Medicamentos , Estrona/química , Femenino , Humanos , Modelos Lineales , Persona de Mediana Edad , Compuestos de Piridinio/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Fumar/sangre
3.
Mol Pharmacol ; 76(3): 516-25, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19535459

RESUMEN

The formation of 15-oxo-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid (15-oxo-ETE) as a product from rabbit lung 15-hydroxyprostaglandin dehydrogenase (PGDH)-mediated oxidation of 15(S)-hydroperoxy-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid was first reported more than 30 years ago. However, the pharmacological significance of 15-oxo-ETE formation has never been established. We have now evaluated 15-lipoxygenase (LO)-1-mediated arachidonic acid (AA) metabolism to 15-oxo-ETE in human monocytes and mouse RAW macrophages that stably express human 15-LO-1 (R15L cells). A targeted lipidomics approach was used to identify and quantify the oxidized lipids that were formed. 15-oxo-ETE was found to be a major AA-derived LO metabolite when AA was given exogenously or released from endogenous esterified lipid stores by calcium ionophore (CI) calcimycin (A-23187). This established the R15L cells as a useful in vitro model system. Pretreatment of the R15L cells with cinnamyl-3,4-dihydroxycyanocinnamate significantly inhibited AA- or CI-mediated production of 15(S)-hydroperoxy-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid [15(S)-HETE] and 15-oxo-ETE, confirming the role of 15-LO-1 in mediating AA metabolite formation. Furthermore, 15(S)-HETE was metabolized primarily to 15-oxo-ETE. Pretreatment of the R15L cells with the 15-hydroxyprostaglandin dehydrogenase (PGDH) inhibitor 5-[[4-(ethoxycarbonyl)phenyl]azo]-2-hydroxy-benzeneacetic acid (CAY10397) reduced AA- and 15(S)-HETE-mediated formation of 15-oxo-ETE in a dose-dependent manner. This confirmed that macrophage-derived 15-PGDH was responsible for catalyzing the conversion of 15(S)-HETE to 15-oxo-ETE. Finally, 15-oxo-ETE was shown to inhibit the proliferation of human vascular vein endothelial cells by suppressing DNA synthesis, implicating a potential antiangiogenic role. This is the first report describing the biosynthesis of 15-oxo-ETE by macrophage/monocytes and its ability to inhibit endothelial cell proliferation.


Asunto(s)
Ácidos Araquidónicos/farmacología , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Macrófagos/enzimología , Animales , Ácidos Araquidónicos/metabolismo , Línea Celular , Humanos , Ratones , Monocitos/metabolismo
4.
Mol Cancer Ther ; 7(4): 905-14, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18413804

RESUMEN

Acute promyelocytic leukemia (APL) is characterized by expression of promyelocytic leukemia (PML)/retinoic acid (RA) receptor alpha (RARalpha) protein and all-trans-RA-mediated clinical remissions. RA treatment can confer PML/RARalpha degradation, overcoming dominant-negative effects of this oncogenic protein. The present study uncovered independent retinoid degradation mechanisms, targeting different domains of PML/RARalpha. RA treatment is known to repress PML/RARalpha and augment ubiquitin-activating enzyme-E1-like (UBE1L) protein expression in NB4-S1 APL cells. We previously reported RA-induced UBE1L and the IFN-stimulated gene, 15-kDa protein ISG15ylation in APL cells. Whether the ubiquitin-like protein ISG15 directly conjugates with PML/RARalpha was not explored previously and is examined in this study. Transient transfection experiments with different PML/RARalpha domains revealed that RA treatment preferentially down-regulated the RARalpha domain, whereas UBE1L targeted the PML domain for repression. As expected, ubiquitin-specific protease 18 (UBP43/USP18), the ISG15 deconjugase, opposed UBE1L but not RA-dependent PML/RARalpha degradation. In contrast, the proteasomal inhibitor, N-acetyl-leucinyl-leucinyl-norleucinal, inhibited both UBE1L- and RA-mediated PML/RARalpha degradation. Notably, UBE1L induced ISG15ylation of the PML domain of PML/RARalpha, causing its repression. These findings confirmed that RA triggers PML/RARalpha degradation through different domains and distinct mechanisms. Taken together, these findings advance prior work by establishing two pathways converge on the same oncogenic protein to cause its degradation and thereby promote antineoplastic effects. The molecular pharmacologic implications of these findings are discussed.


Asunto(s)
Citocinas/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia Promielocítica Aguda/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Enzimas Activadoras de Ubiquitina/farmacología , Ubiquitinas/metabolismo , Animales , Antineoplásicos/farmacología , Bronquios/citología , Bronquios/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Endopeptidasas/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Leupeptinas/farmacología , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transfección , Tretinoina/farmacología , Ubiquitina Tiolesterasa
5.
Mol Cancer Ther ; 7(12): 3780-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19074853

RESUMEN

UBE1L is the E1-like ubiquitin-activating enzyme for the IFN-stimulated gene, 15-kDa protein (ISG15). The UBE1L-ISG15 pathway was proposed previously to target lung carcinogenesis by inhibiting cyclin D1 expression. This study extends prior work by reporting that UBE1L promotes a complex between ISG15 and cyclin D1 and inhibited cyclin D1 but not other G1 cyclins. Transfection of the UBE1L-ISG15 deconjugase, ubiquitin-specific protein 18 (UBP43), antagonized UBE1L-dependent inhibition of cyclin D1 and ISG15-cyclin D1 conjugation. A lysine-less cyclin D1 species was resistant to these effects. UBE1L transfection reduced cyclin D1 protein but not mRNA expression. Cycloheximide treatment augmented this cyclin D1 protein instability. UBE1L knockdown increased cyclin D1 protein. UBE1L was independently retrovirally transduced into human bronchial epithelial and lung cancer cells. This reduced cyclin D1 expression and clonal cell growth. Treatment with the retinoid X receptor agonist bexarotene induced UBE1L and reduced cyclin D1 immunoblot expression. A proof-of-principle bexarotene clinical trial was independently examined for UBE1L, ISG15, cyclin D1, and Ki-67 immunohistochemical expression profiles in pretreatment versus post-treatment tumor biopsies. Increased UBE1L with reduced cyclin D1 and Ki-67 expression occurred in human lung cancer when a therapeutic bexarotene intratumoral level was achieved. Thus, a mechanism for UBE1L-mediated growth suppression was found by UBE1L-ISG15 preferentially inhibiting cyclin D1. Molecular therapeutic implications are discussed.


Asunto(s)
Ciclina D1/metabolismo , Citocinas/metabolismo , Neoplasias Pulmonares/metabolismo , Enzimas Activadoras de Ubiquitina/fisiología , Ubiquitinas/metabolismo , Anticarcinógenos/farmacología , Bexaroteno , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Cicloheximida/farmacología , Humanos , Antígeno Ki-67/biosíntesis , Modelos Biológicos , Plásmidos/metabolismo , Receptores X Retinoide/metabolismo , Tetrahidronaftalenos/farmacología , Enzimas Activadoras de Ubiquitina/química
6.
Clin Cancer Res ; 13(6): 1794-800, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17363535

RESUMEN

PURPOSE: Bexarotene is a rexinoid (selective retinoid X receptor agonist) that affects proliferation, differentiation, and apoptosis in preclinical studies. The relationship between bexarotene levels and biomarker changes in tumor tissues has not been previously studied. EXPERIMENTAL DESIGN: BEAS-2B human bronchial epithelial (HBE) cells, retinoid-resistant BEAS-2B-R1 cells, A427, H226, and H358 lung cancer cells were treated with bexarotene. Proliferation and biomarker expression were assessed. In a proof-of-principle clinical trial, bexarotene tumor tissue levels and intratumoral pharmacodynamic effects were assessed in patients with stages I to II non-small cell lung cancer. Bexarotene (300 mg/m(2)/day) was administered p.o. for 7 to 9 days before resection. RESULTS: Bexarotene-induced dosage-dependent repression of growth, cyclin D1, cyclin D3, total epidermal growth factor receptor (EGFR), and phospho-EGFR expression in BEAS-2B, BEAS-2B-R1, A427, and H358, but not H226 cells. Twelve patients were enrolled, and 10 were evaluable. Bexarotene treatment was well tolerated. There was nonlinear correlation between plasma and tumor bexarotene concentrations (r(2) = 0.77). Biomarker changes in tumors were observed: repression of cyclin D1, total EGFR and proliferation in one case; repression of cyclin D3, total and phospho-EGFR in another. The cases with multiple biomarker changes had high tumor bexarotene (107-159 ng/g). A single biomarker change was detected in one case with low tumor bexarotene. CONCLUSION: Bexarotene represses proliferation and biomarker expression in responsive, but not resistant HBE and lung cancer cells. Similar biomarker changes occur in lung tumors when therapeutic intratumoral bexarotene levels are achieved. This proof-of-principle trial approach is useful to uncover pharmacodynamic mechanisms in vivo and relate these to intratumoral pharmacokinetic effects.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Tetrahidronaftalenos/uso terapéutico , Bexaroteno , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Proyectos Piloto , Periodo Posoperatorio , Premedicación/métodos , Tetrahidronaftalenos/sangre , Tetrahidronaftalenos/farmacocinética , Células Tumorales Cultivadas
7.
Recent Results Cancer Res ; 174: 235-43, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17302201

RESUMEN

Tobacco carcinogen treatment of immortalized human bronchial epithelial (HBE) cells has uncovered novel targets for cancer chemoprevention. Experiments were conducted with HBE cells and independent treatments with tobacco carcinogens along with the chemopreventive agent all-trans-retinoic acid (RA). That work highlighted D-type and E-type cyclins as novel molecular pharmacologic targets of several chemopreventive agents. G1 cyclins are often aberrantly expressed in bronchial preneoplasia and lung cancers. This implicated these species as targets for clinical cancer chemoprevention. Retinoid regulation mechanisms of D-type cyclins in lung cancer chemoprevention have been comprehensively explored. Retinoid chemoprevention has been mechanistically linked to proteasomal degradation of cyclin D1 and cyclin D3. Threonine 286 mutation stabilized cyclin D1, implicating phosphorylation in this retinoid chemoprevention. Studies with a phospho-specific anti-cyclin D1 antibody confirmed this hypothesis. Glycogen synthase kinase (GSK) inhibitors established a role for this kinase in the retinoid regulation of cyclin D1, but not cyclin D3. Involvement of D-type cyclins in this chemoprevention was shown using small interfering RNAs (siRNAs). Gene profiling experiments highlighted the E1-like ubiquitin-activating enzyme (UBE1L) in the retinoid regulation of cyclin D1. Proof of principle trials have translated these studies into the clinic and established that chemopreventive agents can target D-type cyclins. These findings have been built upon with a targeted combination regimen that cooperatively affects D-type cyclins. Taken together, these preclinical and clinical findings strongly implicate these cyclins as novel molecular pharmacological targets for cancer chemoprevention.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Quimioprevención/métodos , Ciclina D1/efectos de los fármacos , Ciclina D1/metabolismo , Neoplasias/prevención & control , Animales , Transformación Celular Neoplásica/metabolismo , Ensayos Clínicos como Asunto , Humanos
8.
Front Biosci ; 10: 699-709, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15569611

RESUMEN

Tocopherols and tocotrienol represent the two subgroups within the vitamin E family of compounds, but only tocotrienols display potent anticancer activity at doses that have little or no effect on normal cell growth or function. Tocotrienols are potent antioxidants, but antitumor activity is independent of antioxidant activity. The exact reason why tocotrienols are more potent than tocopherols is not completely understood, but at least part of the reason is because of greater cellular accumulation. Furthermore, dose-response studies show that growth inhibitory doses of tocotrienols are 5-6 times lower than their corresponding lethal doses, suggesting that the antiproliferative and cytotoxic effects of tocotrienols are mediated through different mechanisms. Recent studies showed that tocotrienol-induced programmed cell death (apoptosis) results from the activation of specific intracellular cysteine proteases (caspases) associated with death receptor activation and signal transduction. Furthermore, combined treatment with specific caspase inhibitors blocked the cytotoxic effects of tocotrienols in malignant mammary epithelial cells. In contrast, tocotrienol inhibition of cell proliferation appears to involve the suppression of multiple hormone- and growth factor-receptor mitogenic signaling pathways. Although additional studies are required to clarify the intracellular mechanisms mediating the anticancer effects of tocotrienols, experimental evidence strongly suggests that dietary supplementation of tocotrienols may provide significant health benefits in lowering the risk of breast cancer in women.


Asunto(s)
Apoptosis , Neoplasias Mamarias Animales/patología , Vitamina E/química , Animales , Antineoplásicos/farmacología , Antioxidantes/química , Línea Celular Tumoral , Proliferación Celular , Activación Enzimática , Humanos , Neoplasias Mamarias Animales/metabolismo , Tocotrienoles/química , Vitamina E/farmacología
9.
Exp Biol Med (Maywood) ; 230(4): 235-41, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15792944

RESUMEN

Tocotrienols, a subgroup within the vitamin E family of compounds, have been shown to display potent anticancer activity and inhibit preneoplastic and neoplastic mammary epithelial cell proliferation at treatment doses that have little or no effect on normal cell growth and function. However, the specific intracellular mechanisms mediating the antiproliferative effects of tocotrienols are presently unknown. Because Akt and nuclear factor kappaB (NFkappaB) are intimately involved in mammary tumor cell proliferation and survival, studies were conducted to determine the effects of gamma-tocotrienol on Akt and NFkappaB activity in neoplastic +SA mammary epithelial cells in vitro. Treatment with 0-8 microM gamma-tocotrienol for 0-3 days caused a dose-responsive inhibition in +SA cell growth and mitotic activity, as determined by MTT colorimetric assay and proliferating cell nuclear antigen immunocytochemical staining, respectively. Studies also showed that treatment with 4 microM gamma-tocotrienol, a dose that inhibited +SA cell growth by more than 50% compared with that of untreated control cells, decreased intracellular levels of activated phosphotidylinositol 3-kinase-dependent kinase (PI3K)-dependent kinase 1 (phospho-PDK-1) and Akt, and reduced phospho-Akt kinase activity. Furthermore, these effects were not found to be associated with an increase in either phosphatase and tensin homologue deleted from chromosome 10 (PTEN) or protein phosphatase type 2A phosphatase activity. In addition, gamma-tocotrienol treatment was shown to decrease NFkappaB transcriptional activity, apparently by suppressing the activation of IkappaB-kinase-alpha/beta, an enzyme associated with inducing NFkappaB activation. In summary, these findings demonstrate that the antiproliferative effects of gamma-tocotrienol result, at least in part, from a reduction in Akt and NFkappaB activity in neoplastic +SA mammary epithelial cells.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Cromanos/farmacología , Neoplasias Mamarias Animales/fisiopatología , FN-kappa B/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas/efectos de los fármacos , Vitamina E/análogos & derivados , Vitamina E/farmacología , Animales , Western Blotting , Línea Celular Tumoral , Cromanos/uso terapéutico , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Femenino , Inmunohistoquímica , Neoplasias Mamarias Animales/tratamiento farmacológico , Ratones , Mitosis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Pruebas de Precipitina , Antígeno Nuclear de Célula en Proliferación/análisis , Proteínas Proto-Oncogénicas c-akt , Factores de Tiempo , Vitamina E/uso terapéutico
10.
J Plant Physiol ; 162(7): 803-10, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16008108

RESUMEN

Tocotrienols, a subgroup within the vitamin E family of compounds, display potent antiproliferative and apoptotic activity against neoplastic mammary epithelial cells at treatment doses that have little or no effect on normal cell growth and function. Recent studies have shown that treatment with a growth inhibitory, but non-cytotoxic dose (4 microM) of gamma-tocotrienol inhibits phosphatidylinositol-3-kinase-dependent kinase (Pl3K)/Pl3K-dependent kinase 1 (PDK-1)/mitogenic signaling over a 2-3 day period following treatment exposure, and these effects were not found to be associated with an increased in either phosphatase and tensin homologue deleted from chromosome 10 (PTEN) or protein phosphatase type 2A (PP2A) phosphatase activity. In addition, this treatment caused a large decrease in NFKB transcriptional activity, apparently by suppressing I kappa B-kinase (IKK)-alpha/beta activation, an enzyme associated with inducing NFKB activation. Since Akt and NFkappaB are intimately involved in mammary tumor cell proliferation and survival, these findings strongly suggest that the antiproliferative effects of gamma-tocotrienol result, at least in part, from a reduction in Akt and NFkappa B activity. In contrast, treatment with 20 microM gamma-tocotrienol (cytotoxic dose) resulted in caspase-8 and -3 activation and apoptosis. It was also shown that this same treatment caused a rapid and large decrease in Pl3K/PDK/Akt signaling within 2-4h following treatment exposure, and a corresponding decrease in intracellular levels of FLIP, an antiapoptotic protein that inhibits caspase-8 activation. In summary, both the antiproliferative and apoptotic effects of gamma-tocotrienol appear to be mediated by a reduction in the Pl3K/PDK-1 /Akt signaling, an important pathway associated with cell proliferation and survival in neoplastic mammary epithelial cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromanos/farmacología , Transducción de Señal , Vitamina E/análogos & derivados , Vitamina E/farmacología , Animales , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Caspasa 3 , Caspasa 8 , Caspasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Mamarias Animales , Ratones , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt
11.
J Proteome Res ; 8(5): 2407-17, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19271751

RESUMEN

Spontaneous preterm birth (PTB) before 37 completed weeks of gestation resulting from preterm labor (PTL) is a leading contributor of perinatal morbidity and mortality. Early identification of at-risk women by reliable screening tests could alleviate this health issue; however, conventional methods such as obstetric history and clinical risk factors, uterine activity monitoring, biochemical markers, and cervical sonography for screening women at risk for PTB have proven unsuccessful in lowering the rate of PTB. Cervicovaginal fluid (CVF) might prove to be a useful, readily available biological fluid for identifying diagnostic PTB biomarkers. Human columnar epithelial endocervical-1 (End1) and vaginal (Vk2) cell secretomes were employed to generate a stable isotope labeled proteome (SILAP) standard to facilitate characterization and relative quantification of proteins present in CVF. The SILAP standard was prepared using stable isotope labeling by amino acids in cell culture (SILAC) of End1 and Vk2 through seven passages. The labeled secreted proteins from both cell lines were combined and characterized by liquid-chromatography-tandem mass spectrometry (LC-MS/MS). In total, 1211 proteins were identified in the End1-Vk2 SILAP standard, with 236 proteins being consistently identified in each of the replicates analyzed. Individual proteins were found to contain <0.5% of the endogenous unlabeled forms. Identified proteins were screened to provide a set of 15 candidates that have either previously been identified as potential PTB biomarkers or could be linked mechanistically to PTB. Stable isotope dilution LC-multiple reaction monitoring (MRM/MS) assays were then developed for conducting relative quantification of the 15 candidate biomarkers in human CVF samples from term and PTB cases. Three proteins were significantly elevated in PTB cases (desmoplakin isoform 1, stratifin, and thrombospondin 1 precursor), providing a foundation for further validation in larger patient cohorts.


Asunto(s)
Biomarcadores/análisis , Cuello del Útero/metabolismo , Cromatografía Liquida/métodos , Nacimiento Prematuro/metabolismo , Espectrometría de Masas en Tándem/métodos , Vagina/metabolismo , Proteínas 14-3-3 , Algoritmos , Secuencia de Aminoácidos , Biomarcadores de Tumor/análisis , Cuello del Útero/citología , Bases de Datos Factuales , Desmoplaquinas/análisis , Exonucleasas/análisis , Exorribonucleasas , Femenino , Humanos , Metabolómica/métodos , Datos de Secuencia Molecular , Proteínas de Neoplasias/análisis , Embarazo , Proteómica/métodos , Trombospondina 1/análisis , Vagina/citología
12.
Biochem Cell Biol ; 83(1): 86-95, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15746970

RESUMEN

Tocotrienols and tocopherols represent the 2 subgroups within the vitamin E family of compounds, but tocotrienols display significantly greater apoptotic activity against a variety of cancer cell types. However, the exact mechanism mediating tocotrienol-induced apoptosis is not understood. Studies were conducted to determine the effects of tocotrienols on mitochondrial-stress-mediated apoptotic signaling in neoplastic +SA mammary epithelial cells grown in vitro. Exposure for 24 h to 0-20 micromol/L gamma-tocotrienol resulted in a dose-responsive increase in +SA cells undergoing apoptosis, as determined by flow cytometric analysis of Annexin V staining. However, tocotrienol-induced apoptosis was not associated with a disruption or loss of mitochondrial membrane potential, or the release of mitochondrial cytochrome c into the cytoplasm, as determined by JC-1 flow cytometric staining and ELISA assay, respectively. Interestingly, apoptotic +SA cells showed a paradoxical decrease in mitochondrial levels of pro-apoptotic proteins Bid, Bax, and Bad, and a corresponding increase in mitochondrial levels of anti-apoptotic proteins, Bcl-2 and Bcl-xL, suggesting that mitochondrial membrane stability and integrity might actually be enhanced for a limited period of time following acute tocotrienol exposure. In summary, these findings clearly demonstrate that tocotrienol-induced apoptosis occurs independently of mitochondrial stress apoptotic signaling in neoplastic +SA mammary epithelial cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Cromanos/toxicidad , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Vitamina E/análogos & derivados , Animales , Anexina A5/análisis , Muerte Celular/efectos de los fármacos , Supervivencia Celular , Cromanos/farmacología , Citocromos c/metabolismo , Femenino , Genes bcl-2/genética , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Mecánico , Células Tumorales Cultivadas , Vitamina E/farmacología , Vitamina E/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA