Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO J ; 40(1): e104416, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33185277

RESUMEN

The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue-native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo- and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole-3-acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiología , Flavonoles/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ftalimidas/metabolismo
2.
New Phytol ; 238(5): 1924-1941, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36918499

RESUMEN

An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Proteínas de Transporte de Membrana , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Cloruro de Sodio
3.
J Exp Bot ; 73(7): 2021-2034, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34940828

RESUMEN

C4 photosynthesis increases the efficiency of carbon fixation by spatially separating high concentrations of molecular oxygen from Rubisco. The specialized leaf anatomy required for this separation evolved independently many times. The morphology of C4 root systems is also distinctive and adapted to support high rates of photosynthesis; however, little is known about the molecular mechanisms that have driven the evolution of C4 root system architecture. Using a mutant screen in the C4 model plant Setaria italica, we identify Siaux1-1 and Siaux1-2 as root system architecture mutants. Unlike in S. viridis, AUX1 promotes lateral root development in S. italica. A cell by cell analysis of the Siaux1-1 root apical meristem revealed changes in the distribution of cell volumes in all cell layers and a dependence of the frequency of protophloem and protoxylem strands on SiAUX1. We explore the molecular basis of the role of SiAUX1 in seedling development using an RNAseq analysis of wild-type and Siaux1-1 plants and present novel targets for SiAUX1-dependent gene regulation. Using a selection sweep and haplotype analysis of SiAUX1, we show that Hap-2412TT in the promoter region of SiAUX1 is an allele which is associated with lateral root number and has been strongly selected for during Setaria domestication.


Asunto(s)
Setaria (Planta) , Domesticación , Fotosíntesis , Hojas de la Planta/genética , Setaria (Planta)/genética
4.
Planta ; 236(1): 63-77, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22258747

RESUMEN

Sorting of transmembrane proteins into the inner vesicles of multivesicular bodies for subsequent delivery to the vacuole/lysosome can be induced by attachment of a single ubiquitin or K63-linked ubiquitin chains to the cytosolic portion of the cargo in yeast and mammals. In plants, large efforts have been undertaken to elucidate the mechanisms of vacuolar trafficking of soluble proteins. Sorting of transmembrane proteins, by contrast, is still largely unexplored. As a proof of principle, that ubiquitin is involved in vacuolar sorting in plants we show that a translational fusion of a single ubiquitin to the Arabidopsis plasma membrane ATPase PMA-EGFP is sufficient to induce its endocytosis and sorting into the vacuolar lumen. Sorting of the artificial reporter is not dependent on ubiquitin chain formation, but involves ubiquitin's hydrophobic patch and can be inhibited by coexpression of a dominant-negative version of the ESCRT (endosomal sorting complex required for transport) related protein AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1). Our results suggest that ubiquitin can in principle act as vacuolar sorting signal in plants.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Arabidopsis/metabolismo , Membrana Celular/enzimología , Transporte de Proteínas/fisiología , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Vacuolas/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Transducción de Señal , Ubiquitinación
5.
Plant J ; 64(1): 71-85, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20663085

RESUMEN

The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant-negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome-specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development. Shortly after its formation, however, the large central vacuole is fragmented and finally disappears completely. Secretion assays with amylase fused to the vacuolar sorting signal of Sporamin show that dominant-negative AtSKD1 inhibits vacuolar trafficking of the reporter that is instead secreted. In addition, trichomes expressing dominant-negative AtSKD1 frequently contain multiple nuclei. Our results suggest that AtSKD1 contributes to vacuolar protein trafficking and thereby to the maintenance of the large central vacuole of plant cells, and might play a role in cell-cycle regulation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Vacuolas/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , ADN de Plantas/genética , Endosomas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas
6.
Plant Mol Biol ; 76(1-2): 85-96, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21442383

RESUMEN

In yeast, endosomal sorting of monoubiquitylated transmembrane proteins is performed by a subset of the 19 "class E vacuolar protein sorting" proteins. The core machinery consists of 11 proteins that are organised in three complexes termed ESCRT I-III (endosomal sorting complex required for transport I-III) and is conserved in eukaryotic cells. While the pathway is well understood in yeast and animals, the plant ESCRT system is largely unexplored. At least one sequence homolog for each ESCRT component can be found in the Arabidopsis genome. Generally, sequence conservation between yeast/animals and the Arabidopsis proteins is low. To understand details about participating proteins and complex organization we have performed a systematic pairwise yeast two hybrid analysis of all Arabidopsis proteins showing homology to the ESCRT core machinery. Positive interactions were validated using bimolecular fluorescence complementation. In our experiments, most putative ESCRT components exhibited interactions with other ESCRT components that could be shown to occur on endosomes suggesting that despite their low homology to their yeast and animal counterparts they represent functional components of the plant ESCRT pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mapeo de Interacción de Proteínas/métodos , Animales , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Simulación por Computador , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Modelos Biológicos , Unión Proteica , Protoplastos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
7.
Trends Plant Sci ; 22(3): 225-235, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28131745

RESUMEN

Systems biology orientates signaling pathways in their biological context. This aim invariably requires models that ignore extraneous factors and focus on the most crucial pathways of any given process. The developing embryo encapsulates many important processes in plant development; understanding their interaction will be key to designing crops able to maximize yield in an ever-more challenging world. Here, we briefly summarize the role of auxin during embryo development. We highlight recent advances in our understanding of auxin signaling and discuss implications for a systems understanding of development.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Biología de Sistemas/métodos , Regulación de la Expresión Génica de las Plantas , Modelos Teóricos , Semillas/metabolismo , Semillas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
Sci Rep ; 7(1): 8677, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819237

RESUMEN

Cell death, autophagy and endosomal sorting contribute to many physiological, developmental and immunological processes in plants. They are mechanistically interconnected and interdependent, but the molecular basis of their mutual regulation has only begun to emerge in plants. Here, we describe the identification and molecular characterization of CELL DEATH RELATED ENDOSOMAL FYVE/SYLF PROTEIN 1 (CFS1). The CFS1 protein interacts with the ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT I (ESCRT-I) component ELCH (ELC) and is localized at ESCRT-I-positive late endosomes likely through its PI3P and actin binding SH3YL1 Ysc84/Lsb4p Lsb3p plant FYVE (SYLF) domain. Mutant alleles of cfs1 exhibit auto-immune phenotypes including spontaneous lesions that show characteristics of hypersensitive response (HR). Autoimmunity in cfs1 is dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-mediated effector-triggered immunity (ETI) but independent from salicylic acid. Additionally, cfs1 mutants accumulate the autophagy markers ATG8 and NBR1 independently from EDS1. We hypothesize that CFS1 acts at the intersection of autophagosomes and endosomes and contributes to cellular homeostasis by mediating autophagosome turnover.


Asunto(s)
Autofagosomas/metabolismo , Muerte Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes de Plantas , Alelos , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Autoinmunidad , Genoma de Planta , Genotipo , Mutación , Fenotipo
9.
Plant Signal Behav ; 5(10): 1308-10, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20930567

RESUMEN

We have recently shown that overexpression of dominant-negative AtSKD1 versions under control of the trichome and non-root-hair-cell specific GL2 promoter (GL2pro) blocks trafficking of soluble cargo to the vacuole, resulting in its fragmentation and ultimately cell death. GL2pro is also active in the Arabidopsis seeds. When we inspected seeds of the dominant-negative AtSKD1 variants we found two phenotypes. The seeds display a transparent testa phenotype caused by a lack of proanthocyanidin (PA) and do not possess seed coat mucilage. Both phenotypes could be connected by cell death induced by the overexpression of dominant-negative AtSKD1.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adhesivos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Genes Dominantes/genética , Proteínas de Homeodominio/genética , Regiones Promotoras Genéticas , Semillas/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Fenotipo , Proantocianidinas/metabolismo , Semillas/citología
10.
Development ; 133(23): 4679-89, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17090720

RESUMEN

Recently, an alternative route to the proteasomal protein-degradation pathway was discovered that specifically targets transmembrane proteins marked with a single ubiquitin to the endosomal multivesicular body (MVB) and, subsequently, to the vacuole (yeast) or lysosome (animals), where they are degraded by proteases. Vps23p/TSG101 is a key component of the ESCRT I-III machinery in yeast and animals that recognizes mono-ubiquitylated proteins and sorts them into the MVB. Here, we report that the Arabidopsis ELCH (ELC) gene encodes a Vps23p/TSG101 homolog, and that homologs of all known ESCRT I-III components are present in the Arabidopsis genome. As with its animal and yeast counterparts, ELC binds ubiquitin and localizes to endosomes. Gel-filtration experiments indicate that ELC is a component of a high-molecular-weight complex. Yeast two-hybrid and immunoprecipitation assays showed that ELC interacts with Arabidopsis homologs of the ESCRT I complex. The elc mutant shows multiple nuclei in various cell types, indicating a role in cytokinesis. Double-mutant analysis with kaktus shows that increased ploidy levels do not influence the cytokinesis effect of elc mutants, suggesting that ELC is only important during the first endoreduplication cycle. Double mutants with tubulin folding cofactor a mutants show a synergistic phenotype, suggesting that ELC regulates cytokinesis through the microtubule cytoskeleton.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Secuencia Conservada , Citocinesis/genética , Citocinesis/fisiología , Citoesqueleto/metabolismo , Cartilla de ADN/genética , ADN de Plantas/genética , Endosomas/metabolismo , Genes de Plantas , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA