Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Neurochem ; 168(1): 52-65, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071490

RESUMEN

Gaucher disease (GD) is a lysosomal storage disorder (LSD) caused by the defective activity of acid ß-glucosidase (GCase) which results from mutations in GBA1. Neurological forms of GD (nGD) can be generated in mice by intra-peritoneal injection of conduritol B-epoxide (CBE) which irreversibly inhibits GCase. Using this approach, a number of pathological pathways have been identified in mouse brain by RNAseq. However, unlike transcriptomics, proteomics gives direct information about protein expression which is more likely to provide insight into which cellular pathways are impacted in disease. We now perform non-targeted, mass spectrometry-based quantitative proteomics on brains from mice injected with 50 mg/kg body weight CBE for 13 days. Of the 5038 detected proteins, 472 were differentially expressed between control and CBE-injected mice of which 104 were selected for further analysis based on higher stringency criteria. We also compared these proteins with differentially expressed genes (DEGs) identified by RNAseq. Some lysosomal proteins were up-regulated as was interferon signaling, whereas levels of ion channel related proteins and some proteins associated with neurotransmitter signaling were reduced, as was cholesterol metabolism. One protein, transglutaminase 1 (TGM1), which is elevated in a number of neurodegenerative diseases, was absent from the control group but was found at high levels in CBE-injected mice, and located in the extracellular matrix (ECM) in layer V of the cortex and intracellularly in Purkinje cells in the cerebellum. Together, the proteomics data confirm previous RNAseq data and add additional mechanistic understanding about cellular pathways that may play a role in nGD pathology.


Asunto(s)
Enfermedad de Gaucher , Animales , Ratones , Enfermedad de Gaucher/metabolismo , Proteómica , Glucosilceramidasa/genética , Encéfalo/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo
2.
Liver Int ; 44(8): 2063-2074, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38700427

RESUMEN

BACKGROUND & AIMS: Primary biliary cholangitis (PBC) is a progressive-cholestatic autoimmune liver disease. Dendritic cells (DC) are professional antigen-presenting cells and their prominent presence around damaged bile ducts of PBC patients are documented. cDC1 is a rare subset of DC known for its cross-presentation abilities and interleukin 12 production. Our aim was to assess the role of cDC1 in the pathogenesis of PBC. METHODS: We utilized an inducible murine model of PBC and took advantage of the DC reporter mice Zbtb46gfp and the Batf3-/- mice that specifically lack the cDC1 subset. cDC1 cells were sorted from blood of PBC patients and healthy individuals and subjected to Bulk-MARS-seq transcriptome analysis. RESULTS: Histopathology assessment demonstrated peri-portal inflammation in wild type (WT) mice, whereas only minor abnormalities were observed in Batf3-/- mice. Flow cytometry analysis revealed a two-fold reduction in hepatic CD8/CD4 T cells ratio in Batf3-/- mice, suggesting reduced intrahepatic CD8 T cells expansion. Histological evidence of portal fibrosis was detected only in the WT but not in Batf3-/- mice. This finding was supported by decreased expression levels of pro-fibrotic genes in the livers of Batf3-/- mice. Transcriptome analysis of human cDC1, revealed 78 differentially expressed genes between PBC patients and controls. Genes related to antigen presentation, TNF and IFN signalling and mitochondrial dysfunction were significantly increased in cDC1 isolated from PBC patients. CONCLUSION: Our data illustrated the contribution the cDC1 subset in the pathogenesis of PBC and provides a novel direction for immune based cell-specific targeted therapeutic approach in PBC.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Células Dendríticas , Modelos Animales de Enfermedad , Cirrosis Hepática Biliar , Proteínas Represoras , Animales , Células Dendríticas/inmunología , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Cirrosis Hepática Biliar/genética , Cirrosis Hepática Biliar/patología , Cirrosis Hepática Biliar/inmunología , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ratones Noqueados , Femenino , Hígado/patología , Hígado/inmunología , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Masculino , Factores de Transcripción
3.
Mol Ecol ; 31(14): 3784-3797, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35620948

RESUMEN

Rodent-associated Bartonella species have shown a remarkable genetic diversity and pathogenic potential. To further explore the extent of the natural intraspecific genomic variation and its potential role as an evolutionary driver, we focused on a single genetically diverse Bartonella species, Bartonella krasnovii, which circulates among gerbils and their associated fleas. Twenty genomes from 16 different B. krasnovii genotypes were fully characterized through a genome sequencing assay (using short and long read sequencing), pulse field gel electrophoresis (PFGE), and PCR validation. Genomic analyses were performed in comparison to the B. krasnovii strain OE 1-1. While, single nucleotide polymorphism represented only a 0.3% of the genome variation, structural diversity was identified in these genomes, with an average of 51 ± 24 structural variation (SV) events per genome. Interestingly, a large proportion of the SVs (>40%) was associated with prophages. Further analyses revealed that most of the SVs, and prophage insertions were found at the chromosome replication termination site (ter), suggesting this site as a plastic zone of the B. krasnovii chromosome. Accordingly, six genomes were found to be unbalanced, and essential genes near the ter showed a shift between the leading and lagging strands, revealing the SV effect on these genomes. In summary, our findings demonstrate the extensive genomic diversity harbored by wild B. krasnovii strains and suggests that its diversification is initially promoted by structural changes, probably driven by phages. These events may constantly feed the system with novel genotypes that ultimately lead to inter- and intraspecies competition and adaptation.


Asunto(s)
Infecciones por Bartonella , Bartonella , Siphonaptera , Animales , Bartonella/genética , Genómica/métodos , Gerbillinae , Siphonaptera/genética
4.
Proc Natl Acad Sci U S A ; 116(6): 2318-2327, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659150

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a ubiquitous mechanism that generates transcriptomic diversity. This process is particularly important for proper neuronal function; however, little is known about how RNA editing is dynamically regulated between the many functionally distinct neuronal populations of the brain. Here, we present a spatial RNA editing map in the Drosophila brain and show that different neuronal populations possess distinct RNA editing signatures. After purifying and sequencing RNA from genetically marked groups of neuronal nuclei, we identified a large number of editing sites and compared editing levels in hundreds of transcripts across nine functionally different neuronal populations. We found distinct editing repertoires for each population, including sites in repeat regions of the transcriptome and differential editing in highly conserved and likely functional regions of transcripts that encode essential neuronal genes. These changes are site-specific and not driven by changes in Adar expression, suggesting a complex, targeted regulation of editing levels in key transcripts. This fine-tuning of the transcriptome between different neurons by RNA editing may account for functional differences between distinct populations in the brain.


Asunto(s)
Adenosina , Encéfalo/metabolismo , Drosophila/genética , Inosina , Edición de ARN , Transcriptoma , Adenosina/química , Adenosina/genética , Secuencia de Aminoácidos , Animales , Técnica del Anticuerpo Fluorescente , Inosina/química , Inosina/genética , Microscopía Confocal , Modelos Moleculares , Neuronas/metabolismo , Conformación Proteica , Canales Aniónicos Dependientes del Voltaje/química , Canales Aniónicos Dependientes del Voltaje/genética
5.
Haematologica ; 105(12): 2795-2804, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33256378

RESUMEN

Novel targeted therapies demonstrate improved survival in specific subgroups (defined by genetic variants) of acute myeloid leukemia (AML) patients, validating the paradigm of molecularly targeted therapy. However, identifying correlations between AML molecular attributes and effective therapies is challenging. Recent advances in high-throughput in vitro drug sensitivity screening applied to primary AML blasts were used to uncover such correlations; however, these methods cannot predict the response of leukemic stem cells (LSCs). Our study aimed to predict in vitro response to targeted therapies, based on molecular markers, with subsequent validation in LSCs. We performed ex vivo sensitivity screening to 46 drugs on 29 primary AML samples at diagnosis or relapse. Using unsupervised hierarchical clustering analysis we identified group with sensitivity to several tyrosine kinase inhibitors (TKIs), including the multi-TKI, dasatinib, and searched for correlations between dasatinib response, exome sequencing and gene expression from our dataset and from the Beat AML dataset. Unsupervised hierarchical clustering analysis of gene expression resulted in clustering of dasatinib responders and non-responders. In vitro response to dasatinib could be predicted based on gene expression (AUC=0.78). Furthermore, mutations in FLT3/ITD and PTPN11 were enriched in the dasatinib sensitive samples as opposed to mutations in TP53 which were enriched in resistant samples. Based on these results, we selected FLT3/ITD AML samples and injected them to NSG-SGM3 mice. Our results demonstrate that in a subgroup of FLT3/ITD AML (4 out of 9) dasatinib significantly inhibits LSC engraftment. In summary we show that dasatinib has an anti-leukemic effect both on bulk blasts and, more importantly, LSCs from a subset of AML patients that can be identified based on mutational and expression profiles. Our data provide a rational basis for clinical trials of dasatinib in a molecularly selected subset of AML patients.


Asunto(s)
Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Animales , Dasatinib/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Transcriptoma , Tirosina Quinasa 3 Similar a fms/genética
6.
FASEB J ; 33(11): 12008-12018, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373834

RESUMEN

The heterochronic gene Lin28 regulates diverse developmental processes. It was shown previously that global Lin28A overexpression during mouse embryogenesis results in perinatal lethality. However, the reason for this early lethality has not been elucidated. Here, we showed that Lin28A overexpression prevents normal lung development via the inhibition of the Let-7 micro RNAs, thus causing the perinatal lethality. We further found that Lin28A overexpression in lung mesenchymal cells, but not epithelial cells, is sufficient to recapitulate the lung phenotype. Moreover, we defined the specific time window wherein Lin28A expression exerts its effect. Deep characterization of the transgenic lungs suggests that the Lin28A-Let-7 pathway delays the transition from one developmental stage to another but does not completely abrogate the differentiation capacity of the lung progenitor cells. Finally, we suggested that the effect of Lin28A-Let-7 on embryonic lung development is mediated at least in part through the TGF-ß1-signaling pathway. Altogether, these findings define for the first time the Lin28-Let-7 pathway as a critical heterochronic regulator of lung development.-Komarovsky Gulman, N., Armon, L., Shalit, T., Urbach, A. Heterochronic regulation of lung development via the Lin28-Let-7 pathway.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Pulmón/metabolismo , MicroARNs/genética , Proteínas de Unión al ARN/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Análisis por Conglomerados , Desarrollo Embrionario/genética , Femenino , Pulmón/citología , Pulmón/embriología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones Transgénicos , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/genética , Factores de Tiempo
7.
Int J Syst Evol Microbiol ; 70(3): 1656-1665, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32100689

RESUMEN

The genus Bartonella (Family: Bartonellaceae; Order: Rhizobiales; Class: Alphaproteobacteria) comprises facultative intracellular Gram-negative, haemotropic, slow-growing, vector-borne bacteria. Wild rodents and their fleas harbor a great diversity of species and strains of the genus Bartonella, including several zoonotic ones. This genetic diversity coupled with a fastidious nature of the organism results in a taxonomic challenge that has led to a massive collection of uncharacterized strains. Here, we report the genomic and phenotypic characterization of two strains, members of the genus Bartonella (namely Tel Aviv and OE 1-1), isolated from Rattus rattus rats and Synosternus cleopatrae fleas, respectively. Scanning electron microscopy revealed rod-shaped bacteria with polar pili, lengths ranging from 1.0 to 2.0 µm and widths ranging from 0.3 to 0.6 µm. OE 1-1 and Tel Aviv strains contained one single chromosome of 2.16 and 2.23 Mbp and one plasmid of 29.0 and 41.5 Kbp, with average DNA G+C contents of 38.16 and 38.47 mol%, respectively. These strains presented an average nucleotide identity (ANI) of 89.9 %. Bartonella elizabethae was found to be the closest phylogenetic relative of both strains (ANI=90.9-93.6 %). The major fatty acids identified in both strains were C18:1ω7c, C18 : 0 and C16 : 0. They differ from B. elizabethae in their C17 : 0 and C15 : 0 compositions. Both strains are strictly capnophilic and their biochemical profiles resembled those of species of the genus Bartonella with validly published names, whereas differences in arylamidase activities partially assisted in their speciation. Genomic and phenotypic differences demonstrate that OE 1-1 and Tel Aviv strains represent novel individual species, closely related to B. elizabethae, for which we propose the names Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov.


Asunto(s)
Bartonella/clasificación , Filogenia , Ratas/microbiología , Siphonaptera/microbiología , Animales , Técnicas de Tipificación Bacteriana , Bartonella/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Israel , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Proc Natl Acad Sci U S A ; 114(4): E496-E505, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27994142

RESUMEN

The microRNA miR-504 targets TP53 mRNA encoding the p53 tumor suppressor. miR-504 resides within the fibroblast growth factor 13 (FGF13) gene, which is overexpressed in various cancers. We report that the FGF13 locus, comprising FGF13 and miR-504, is transcriptionally repressed by p53, defining an additional negative feedback loop in the p53 network. Furthermore, we show that FGF13 1A is a nucleolar protein that represses ribosomal RNA transcription and attenuates protein synthesis. Importantly, in cancer cells expressing high levels of FGF13, the depletion of FGF13 elicits increased proteostasis stress, associated with the accumulation of reactive oxygen species and apoptosis. Notably, stepwise neoplastic transformation is accompanied by a gradual increase in FGF13 expression and increased dependence on FGF13 for survival ("nononcogene addiction"). Moreover, FGF13 overexpression enables cells to cope more effectively with the stress elicited by oncogenic Ras protein. We propose that, in cells in which activated oncogenes drive excessive protein synthesis, FGF13 may favor survival by maintaining translation rates at a level compatible with the protein quality-control capacity of the cell. Thus, FGF13 may serve as an enabler, allowing cancer cells to evade proteostasis stress triggered by oncogene activation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Neoplasias/metabolismo , Ribosomas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Factores de Crecimiento de Fibroblastos/genética , Humanos , MicroARNs/genética , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética
9.
J Proteome Res ; 14(4): 1979-86, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25780947

RESUMEN

Presented is a data set for benchmarking MS1-based label-free quantitative proteomics using a quadrupole orbitrap mass spectrometer. Escherichia coli digest was spiked into a HeLa digest in four different concentrations, simulating protein expression differences in a background of an unchanged complex proteome. The data set provides a unique opportunity to evaluate the proteomic platform (instrumentation and software) in its ability to perform MS1-intensity-based label-free quantification. We show that the presented combination of informatics and instrumentation produces high precision and quantification accuracy. The data were also used to compare different quantitative protein inference methods such as iBAQ and Hi-N. The data can also be used as a resource for development and optimization of proteomics informatics tools, thus the raw data have been deposited to ProteomeXchange with identifier PXD001385.


Asunto(s)
Biología Computacional/métodos , Regulación de la Expresión Génica/fisiología , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Proteómica/métodos , Benchmarking/métodos , Escherichia coli , Células HeLa , Humanos
10.
NPJ Parkinsons Dis ; 10(1): 33, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331996

RESUMEN

Despite being the second most common neurodegenerative disorder, little is known about Parkinson's disease (PD) pathogenesis. A number of genetic factors predispose towards PD, among them mutations in GBA1, which encodes the lysosomal enzyme acid-ß-glucosidase. We now perform non-targeted, mass spectrometry based quantitative proteomics on five brain regions from PD patients with a GBA1 mutation (PD-GBA) and compare to age- and sex-matched idiopathic PD patients (IPD) and controls. Two proteins were differentially-expressed in all five brain regions whereas significant differences were detected between the brain regions, with changes consistent with loss of dopaminergic signaling in the substantia nigra, and activation of a number of pathways in the cingulate gyrus, including ceramide synthesis. Mitochondrial oxidative phosphorylation was inactivated in PD samples in most brain regions and to a larger extent in PD-GBA. This study provides a comprehensive large-scale proteomics dataset for the study of PD-GBA.

11.
Nat Cardiovasc Res ; 3(9): 1049-1066, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39215106

RESUMEN

Myocardial injury may ultimately lead to adverse ventricular remodeling and development of heart failure (HF), which is a major cause of morbidity and mortality worldwide. Given the slow pace and substantial costs of developing new therapeutics, drug repurposing is an attractive alternative. Studies of many organs, including the heart, highlight the importance of the immune system in modulating injury and repair outcomes. Glatiramer acetate (GA) is an immunomodulatory drug prescribed for patients with multiple sclerosis. Here, we report that short-term GA treatment improves cardiac function and reduces scar area in a mouse model of acute myocardial infarction and a rat model of ischemic HF. We provide mechanistic evidence indicating that, in addition to its immunomodulatory functions, GA exerts beneficial pleiotropic effects, including cardiomyocyte protection and enhanced angiogenesis. Overall, these findings highlight the potential repurposing of GA as a future therapy for a myriad of heart diseases.


Asunto(s)
Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Acetato de Glatiramer , Animales , Acetato de Glatiramer/uso terapéutico , Acetato de Glatiramer/farmacología , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Ratas , Ratones , Insuficiencia Cardíaca/tratamiento farmacológico , Función Ventricular Izquierda/efectos de los fármacos , Ratas Sprague-Dawley , Células Cultivadas , Remodelación Ventricular/efectos de los fármacos
12.
Front Endocrinol (Lausanne) ; 14: 1127536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37378024

RESUMEN

Introduction: Both the calvarial and the cortical bones develop through intramembranous ossification, yet they have very different structures and functions. The calvaria enables the rapid while protected growth of the brain, whereas the cortical bone takes part in locomotion. Both types of bones undergo extensive modeling during embryonic and post-natal growth, while bone remodeling is the most dominant process in adults. Their shared formation mechanism and their highly distinct functions raise the fundamental question of how similar or diverse the molecular pathways that act in each bone type are. Methods: To answer this question, we aimed to compare the transcriptomes of calvaria and cortices from 21-day old mice by bulk RNA-Seq analysis. Results: The results revealed clear differences in expression levels of genes related to bone pathologies, craniosynostosis, mechanical loading and bone-relevant signaling pathways like WNT and IHH, emphasizing the functional differences between these bones. We further discussed the less expected candidate genes and gene sets in the context of bone. Finally, we compared differences between juvenile and mature bone, highlighting commonalities and dissimilarities of gene expression between calvaria and cortices during post-natal bone growth and adult bone remodeling. Discussion: Altogether, this study revealed significant differences between the transcriptome of calvaria and cortical bones in juvenile female mice, highlighting the most important pathway mediators for the development and function of two different bone types that originate both through intramembranous ossification.


Asunto(s)
Osteogénesis , Cráneo , Ratones , Femenino , Animales , Cráneo/metabolismo , Osteogénesis/genética , Desarrollo Óseo/genética , Hueso Cortical , Expresión Génica
13.
Environ Int ; 166: 107366, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35763991

RESUMEN

The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with ß-pinene SOA (SOAßPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAßPin-SP mostly contained oxygenated aliphatic compounds from ß-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAßPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the ß-pinene-derived SOA.

14.
Cell Rep Med ; 2(5): 100281, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34095883

RESUMEN

Anxiety and stress-related conditions represent a significant health burden in modern society. Unfortunately, most anxiolytic drugs are prone to side effects, limiting their long-term usage. Here, we employ a bioinformatics screen to identify drugs for repurposing as anxiolytics. Comparison of drug-induced gene-expression profiles with the hippocampal transcriptome of an importin α5 mutant mouse model with reduced anxiety identifies the hypocholesterolemic agent ß-sitosterol as a promising candidate. ß-sitosterol activity is validated by both intraperitoneal and oral application in mice, revealing it as the only clear anxiolytic from five closely related phytosterols. ß-sitosterol injection reduces the effects of restraint stress, contextual fear memory, and c-Fos activation in the prefrontal cortex and dentate gyrus. Moreover, synergistic anxiolysis is observed when combining sub-efficacious doses of ß-sitosterol with the SSRI fluoxetine. These preclinical findings support further development of ß-sitosterol, either as a standalone anxiolytic or in combination with low-dose SSRIs.


Asunto(s)
Ansiolíticos/farmacología , Trastornos de Ansiedad/tratamiento farmacológico , Ansiedad/tratamiento farmacológico , Sitoesteroles/farmacología , Animales , Miedo/efectos de los fármacos , Fluoxetina/farmacología , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Preparaciones Farmacéuticas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Tranquilizantes/farmacología
15.
Neuromolecular Med ; 20(4): 419-436, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30276585

RESUMEN

Toll receptors, first identified to regulate embryogenesis and immune responses in the adult fly and subsequently defined as the principal sensors of infection in mammals, are increasingly appreciated for their impact on the homeostasis of the central as well as the peripheral nervous systems. Whereas in the context of immunity, the fly Toll and the mammalian TLR pathways have been researched in parallel, the expression pattern and functionality have largely been researched disparately. Herein, we provide data on the expression pattern of the Toll homologues, signaling components, and downstream effectors in ten different cell populations of the adult fly central nervous system (CNS). We have compared the expression of the different Toll pathways in the fly to the expression of TLRs in the mouse brain and discussed the implications with respect to commonalities, differences, and future perspectives.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Ratones/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Toll-Like/fisiología , Animales , Encéfalo/metabolismo , Sistema Nervioso Central/inmunología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Regulación de la Expresión Génica , Ratones/inmunología , Neuroglía/metabolismo , Neuronas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , ARN Mensajero/biosíntesis , Transducción de Señal , Especificidad de la Especie , Receptores Toll-Like/genética
16.
Cell Rep ; 20(11): 2547-2555, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28903036

RESUMEN

Cytotoxic T lymphocytes (CTLs) used in immunotherapy are typically cultured under atmospheric O2 pressure but encounter hypoxic conditions inside tumors. Activating CTLs under hypoxic conditions has been shown to improve their cytotoxicity in vitro, but the mechanism employed and the implications for immunotherapy remain unknown. We activated and cultured OT-I CD8 T cells at either 1% or 20% O2. Hypoxic CTLs survived, as well as normoxic ones, in vitro but killed OVA-expressing B16 melanoma cells more efficiently. Hypoxic CTLs contained similar numbers of cytolytic granules and released them as efficiently but packaged more granzyme-B in each granule without producing more perforin. We imaged CTL distribution and motility inside B16-OVA tumors using confocal and intravital 2-photon microscopy and observed no obvious differences. However, mice treated with hypoxic CTLs exhibited better tumor regression and survived longer. Thus, hypoxic CTLs may perform better in tumor immunotherapy because of higher intrinsic cytotoxicity rather than improved migration inside tumors.


Asunto(s)
Antineoplásicos/metabolismo , Citotoxicidad Inmunológica , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología , Animales , Diferenciación Celular , Hipoxia de la Célula/inmunología , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Granzimas/metabolismo , Ratones , Neoplasias/irrigación sanguínea , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA