Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biochem Biophys Res Commun ; 658: 69-79, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37027907

RESUMEN

PURPOSE: Fisetin (FIS) is a natural flavonoid with anti-proliferative and anti-apoptotic effects on different human cancer cell lines and can be considered a therapeutic agent for ALL treatment. However, FIS has little aqueous solubility and bioavailability, limiting its therapeutic applications. Thus, novel drug delivery systems are needed to improve solubility and bioavailability of FIS. Plant-derived nanoparticles (PDNPs) could be considered a great delivery system for FIS to the target tissues. In this study, we investigated the anti-proliferative and anti-apoptotic effect of free FIS and FIS-loaded Grape-derived Nanoparticles (GDN) FIS-GDN in MOLT-4 cells. MATERIALS/METHODS: In this study, MOLT-4 cells were treated with increasing concentration of FIS and FIS-GDN and viability of cells were assessed by MTT assay. Additionally, cellular apoptosis rate and related genes expression were evaluated using flow cytometry and Real Time-PCR methods, respectively. RESULTS: FIS and FIS-GDN decreased cells viability and increased cells apoptosis dose-dependently, but not time dependently. Treatment of MOLT-4 cells with increasing concentrations of FIS and FIS-GDN considerably increased the expression of caspase 3, 8 and 9 and Bax level, and also decreased the expression of Bcl-2. Results indicated an increased apoptosis after increased concentration of FIS and FIS-GDN at 24, 48 and 72 h. CONCLUSIONS: Our data proposed that FIS and FIS-GDN can induce apoptosis and have antitumor properties in MOLT-4 cells. Furthermore, compared to FIS, FIS-GDN induced more apoptosis in these cells by increasing the solubility and efficiency of FIS. Additionally, GDNs increased FIS effectiveness in proliferation inhibition and apoptosis induction.


Asunto(s)
Nanopartículas , Vitis , Humanos , Flavonoles/farmacología , Flavonoides/farmacología , Apoptosis , Línea Celular Tumoral
2.
J Cell Physiol ; 235(12): 9230-9240, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32557631

RESUMEN

Umbilical cord Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have recently gained considerable attention in the field of regenerative medicine. Their high proliferation rate, differentiation ability into various cell lineages, easy collection procedure, immuno-privileged status, nontumorigenic properties along with minor ethical issues make them an ideal approach for tissue repair. Besides, the number of WJ-MSCs in the umbilical cord samples is high as compared to other sources. Because of these properties, WJ-MSCs have rapidly advanced into clinical trials for the treatment of a wide range of disorders. Therefore, this paper summarized the current preclinical and clinical studies performed to investigate the regenerative potential of WJ-MSCs in neural, myocardial, skin, liver, kidney, cartilage, bone, muscle, and other tissue injuries.


Asunto(s)
Células Madre Mesenquimatosas/citología , Trasplante de Células Madre , Cordón Umbilical/citología , Gelatina de Wharton/citología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Humanos , Trasplante de Células Madre/métodos
3.
Cell Immunol ; 315: 1-10, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28284487

RESUMEN

Understanding the role of toll-like receptors (TLRs) in the immunomodulation potential, differentiation, migration, and survival of mesenchymal stem cells (MSCs) is absolutely vital to fully exploiting their MSC-based therapeutic potential. Furthermore, through recognition of exogenous or endogenous ligands produced upon injury, TLRs have been linked to allograft rejection and maintenance of chronic inflammatory diseases, including Crohn's disease, rheumatoid arthritis. Characterizing the effect of TLRs in biological control of MSCs fate and function could improve our knowledge about the MSC-based cell therapy and immunotherapy. In this paper, we outline the impacts of TLR activation and mechanisms on MSCs immunomodulatory functions, differentiation, migration, and survivability. Moreover, we indicate that the expression patterns of TLRs in MSCs from different sources.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Receptores Toll-Like/fisiología , Adipogénesis/fisiología , Animales , Apoptosis/fisiología , Linaje de la Célula , Movimiento Celular/fisiología , Condrogénesis/fisiología , Endosomas/fisiología , Humanos , Sistema Inmunológico/fisiología , Inflamación/fisiopatología , Ratones , Especificidad de Órganos , Osteogénesis/fisiología , Moléculas de Patrón Molecular Asociado a Patógenos
4.
Tumour Biol ; 37(9): 11711-11721, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27444280

RESUMEN

Breast cancer is the most common cancer and the second leading cause of cancer-related deaths among women worldwide. Although patients are often diagnosed in the early and curable stages, the treatment of metastatic breast cancer remains a major clinical challenge. The combination of chemotherapy with new targeting agents, such as bevacizumab, is helpful in improving patient survival; however, novel treatment strategies are required to improve clinical outcomes. The insulin-like growth factor-I receptor (IGF-IR) is a tyrosine kinase cell surface receptor which is involved in the regulation of cell growth and metabolism. Previous studies have shown that activation of the IGF-IR signaling pathway promotes proliferation, survival, and metastasis of breast cancer cells. Additionally, overexpression of IGF-IR is associated with breast cancer cell resistance to anticancer therapies. Recently, IGF-IR has been introduced as a marker of stemness in breast cancer cells and there is also accumulating evidence that IGF-IR contributes to the establishment and maintenance of breast cancer epithelial-mesenchymal transition (EMT). Therefore, pharmacological or molecular targeting of IGF-IR could be a promising strategy, in the treatment of patients with breast cancer, particularly in order to circumvent the therapeutic resistance and targeting breast cancer stem/progenitors. Currently, many strategies have been developed for targeting IGF-IR, some have entered clinical trials and some are in preclinical stages for breast cancer therapy. In this review, we will first discuss on the biology of IGF-IR in an attempt to find the role of this receptor in breast cancer and then discuss about therapeutic strategies to target this receptor.


Asunto(s)
Neoplasias de la Mama/terapia , Receptor IGF Tipo 1/fisiología , Adiponectina/fisiología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Femenino , Humanos , Tolerancia a Radiación , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptores de Estrógenos/fisiología , Transducción de Señal/fisiología
5.
Future Oncol ; 11(10): 1567-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25963433

RESUMEN

While Tregs maintain self-tolerance and inhibit antitumor responses, T helper (Th)17 cells may enhance inflammatory and antitumor responses. The balance between these two important T-cell subsets has been skewed in many immunopathologic conditions such as autoimmune and cancer diseases. B-cell chronic lymphocytic leukemia (CLL) is the most common form of leukemia in the western world and is characterized with monoclonal expansion of B lymphocytes. There is evidence which implies that the progression of CLL is associated with expansion of Treg and downregulation of Th17 cells. In this review, we will discuss about immunobiology of Treg and Th17 cells and their role in immunopathogenesis of CLL as well as their reciprocal changes during disease progression.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Recuento de Linfocitos , Transducción de Señal , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Microambiente Tumoral/inmunología
6.
Stem Cell Res Ther ; 14(1): 122, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143147

RESUMEN

BACKGROUND: Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY: Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION: The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/terapia , Secretoma , Trasplante de Células Madre Mesenquimatosas/métodos
7.
Asian J Transfus Sci ; 17(1): 108-116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188016

RESUMEN

A countrywide study over the eras indicates overuse of blood transfusion can have considerable risks to patients accompanied by significant costs of blood transfusion for patients, hospitals, and health-care systems. Besides, more than 30% of the world's population is anemic. Typically, blood transfusion helps continue suitable oxygen transfer in anemia, i.e., more and more documented as a threatening factor with several adverse outcomes including long hospitalization, morbidity, and mortality. Transplantation of allogeneic blood is thus like a two-edged sword. There is no doubt that the blood transfusion is a life-saving treatment, but it should be underpinned by much of up-to-date health-care services. The new theory considered for patient blood management (PBM) also discusses the timely application of evidence-based surgical and clinical theories and focuses on patient outcomes. Furthermore, PBM involves a multidisciplinary methodology to reduce unnecessary transfusions, minimize costs, and cut risks.

8.
Stem Cell Res Ther ; 13(1): 202, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578300

RESUMEN

Bone marrow mesenchymal stromal cells (MSCs) play a crucial role in the regulation of hematopoiesis. These cells affect the process through direct cell-cell contact, as well as releasing various trophic factors and extracellular vehicles (EVs) into the bone marrow microenvironment. MSC-derived EVs (MSC-EVs) are prominent intercellular communication tolls enriched with broad-spectrum bioactive factors such as proteins, cytokines, lipids, miRNAs, and siRNAs. They mimic some effects of MSCs by direct fusion with hematopoietic stem cells (HSC) membranes in the bone marrow (BM), thereby affecting HSC fate. MSC-EVs are attractive scope in cell-free therapy because of their unique capacity to repair BM tissue and regulate proliferation and differentiation of HSCs. These vesicles modulate the immune system responses and inhibit graft-versus-host disease following hematopoietic stem cell transplantation (HSCT). Recent studies have demonstrated that MSC-EVs play an influential role in the BM niches because of their unprecedented capacity to regulate HSC fate. Therefore, the existing paper intends to speculate upon the preconditioned MSC-EVs as a novel approach in HSCT.


Asunto(s)
Vesículas Extracelulares , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Vesículas Extracelulares/metabolismo , Enfermedad Injerto contra Huésped/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Madre Hematopoyéticas/metabolismo , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Células Madre Mesenquimatosas/metabolismo
9.
Int Immunopharmacol ; 102: 108409, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34863655

RESUMEN

Regulatory T cells (Tregs) have the role of regulating self-tolerance, and suppressing immune responses. Defects in Treg function and number can lead to in loss of tolerance or autoimmune disease. To treat or control autoimmune diseases, one of the options is to develop immune tolerance for Tregs cell therapy, which includes promotion and activation. Recently, cell-based treatment as a promising approach to increase cells function and number has been developed. Cell therapy by chimeric T antigen receptor (CAR-T) cells has shown significant efficacy in the treatment of leukemia, which has led researchers to use CAR-T cells in other diseases like autoimmune diseases. Here, we describe the existing treatments for autoimmune diseases and the available treatments based on Treg, their benefits and restrictions for implementation in clinical trials. We also discussed potential solutions to overcome these limitations. It seems novel designs of CARs to be new hope for autoimmune diseases and expected to be a potential cure option in a wide array of disease in the future. Therefore, it is very important to address this issue and increase information about it.


Asunto(s)
Enfermedades Autoinmunes/terapia , Inmunoterapia/métodos , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Humanos
10.
Stem Cell Res Ther ; 13(1): 97, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255980

RESUMEN

Natural killer cells (NK cells) are innate immune cells that are activated to fight tumor cells and virus-infected cells. NK cells also play an important role in the graft versus leukemia response. However, they can over-develop inflammatory reactions by secreting inflammatory cytokines and increasing Th1 differentiation, eventually leading to tissue damage. Today, researchers have attributed some autoimmune diseases and GVHD to NK cells. On the other hand, it has been shown that mesenchymal stem cells (MSCs) can modulate the activity of NK cells, while some researchers have shown that NK cells can cause MSCs to lysis. Therefore, we considered it is necessary to investigate the effect of these two cells and their signaling pathway in contact with each other, also their clinical applications.


Asunto(s)
Inmunomodulación , Células Madre Mesenquimatosas , Diferenciación Celular , Citocinas/metabolismo , Células Asesinas Naturales
11.
Adv Pharm Bull ; 12(1): 109-117, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35517877

RESUMEN

Purpose: Insoluble fibronectin as an extracellular matrix (ECM) protein has the potential to promote proliferation, differentiation, and migration of mesenchymal stem cells (MSCs). However, there is limited information about the effects of fibronectin various concentrations on bone marrow-derived MSCs (BMMSCs) function and differentiation. Methods: In this experimental study, using a gel injection device, BMMSCs were encapsulated in sodium alginate microcapsules containing 1.25% alginate, 1% gelatin, and fibronectin (0.01, 0.05, 0.1, and 0.2 µg/ml). MTT assay was used to examine the proliferation of BMMSCs. Also, BMMSCs apoptosis were analyzed using Annexin-V/PI staining and fluorescence activated cell sorting (FACS). Alkaline phosphatase (ALP) test was conducted to assess BMMSCs osteogenic differentiation potential. Finally, mRNA expression levels of the SP7, osteocalcin (OCN), Twist Family BHLH Transcription Factor 1 (Twist1), Peroxisome proliferator-activated receptor γ2 (PPARγ2), Cyclin-dependent kinase 1 (CDK1), and Zinc Finger and BTB Domain Containing 16 (ZBTB16), following exposure with fibronectin 0.1 µg/ml. Results: According to results, fibronectin had the potential to promote proliferation rates of the BMMSCs, in particular at 0.1 and 0.2 µg/ml concentrations. we showed that the fibronectin was not able to modify apoptosis rates of the BMMSCs. ALP test results approved the notable potential of the fibronectin, to trigger osteogenic differentiation of the BMMSCs. Also, RT-PCR results indicated that fibronectin 0.1 µg/ml could augment osteogenic differentiation of cultured BMMSCs through targeting of OCN, SP7, Twist1, CDK1, and ZBTB16, strongly or slightly. Conclusion: Results showed that fibronectin can improve proliferation and osteogenic differentiation of BMMSCs without any effect on these cells' survival.

12.
Stem Cell Res Ther ; 13(1): 262, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725505

RESUMEN

Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, are one of the most frequent causes of morbidity and mortality in the global. COPD is characterized by progressive loss of lung function through inflammation, apoptosis, and oxidative stress caused by chronic exposure to harmful environmental pollutants. Airway inflammation and epithelial remodeling are also two main characteristics of asthma. In spite of extensive efforts from researchers, there is still a great need for novel therapeutic approaches for treatment of these conditions. Accumulating evidence suggests the potential role of mesenchymal stem cells (MSCs) in treatment of many lung injuries due to their beneficial features including immunomodulation and tissue regeneration. Besides, the therapeutic advantages of MSCs are chiefly related to their paracrine functions such as releasing extracellular vesicles (EVs). EVs comprising exosomes and microvesicles are heterogeneous bilayer membrane structures loaded with various lipids, nucleic acids and proteins. Due to their lower immunogenicity, tumorigenicity, and easier management, EVs have appeared as favorable alternatives to stem cell therapies. Therefore, in this review, we provided an overview on the current understanding of the importance of MSCs and MSC-derived EVs from different sources reported in preclinical and clinical COPD and asthmatic models.


Asunto(s)
Asma , Vesículas Extracelulares , Células Madre Mesenquimatosas , Enfermedad Pulmonar Obstructiva Crónica , Asma/terapia , Vesículas Extracelulares/metabolismo , Humanos , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/terapia
13.
Iran J Allergy Asthma Immunol ; 20(6): 711-720, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34920654

RESUMEN

Many studies have been performed about regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs) and their application in different treatment approaches. The present study aimed to investigate the immunomodulatory effect of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) on the gene expression profile of cytokines in stimulated T-lymphocytes. For this purpose, MSCs were isolated from umbilical cord blood samples and cultured in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum. The nature of MSCs was identified by flow cytometry analysis and differentiation to the adipocyte and osteocyte lineage. Moreover, to investigate the immunomodulatory effects of MSCs on T cells, a co-culture system was designed and expression levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-13, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-ß) genes were measured; using the real-time polymerase chain reaction (RT-PCR) technique. Our results demonstrated the ability of MSCs to differentiate into adipocyte and osteocyte lineages. Further investigation also displayed that although UCB-MSCs could significantly reduce the expression of pro-inflammatory cytokines like IL-2, IL-6, IFN-γ, and TNF-α in activated T-lymphocytes, they noticeably potentiated the expression levels of IL-4, IL-10, IL-13, and TGF-ß in the co-culture setting. In conclusion, UCB-MSCs have immunomodulatory effects on activated T-lymphocytes in favor of anti-inflammatory responses.


Asunto(s)
Citocinas/inmunología , Sangre Fetal/inmunología , Inmunomodulación , Activación de Linfocitos/inmunología , Células Madre Mesenquimatosas/inmunología , Linfocitos T/inmunología , Humanos , Inflamación/inmunología
14.
Adv Pharm Bull ; 10(2): 315-322, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32373502

RESUMEN

Purpose: Mesenchymal stem cells (MSCs) release hematopoietic cytokines, growth factors, and Microvesicles (MVs) supporting the hematopoietic stem cells (HSCs). MVs released from various cells, playing a crucial role in biological functions of their parental cells. MSC-derived MVs contain microRNAs and proteins with key roles in the regulation of hematopoiesis. Umbilical cord blood (UCB) is a source for transplantation but the long-term recovery of platelets is a main problem. Therefore, we intend to show that MSC-MVs are able to improve the differentiation of UCB-derived CD34+ cells to megakaryocyte lineage. Methods: In this descriptive study, MSCs were cultured in DMEM to collect the culture supernatant, which was ultracentrifuged for the isolation of MVs. HSCs were isolated from UCB using MACS method and cultured in IMDM supplemented with cytokines and MVs in three different conditions. Megakaryocyte differentiation was evaluated through the expression of specific markers and genes after 72 hours, and the data was analyzed by t test (P<0.05). Results: The expression of specific megakaryocyte markers (CD41 and CD61) in the presence of different concentrations of MSC-MVs did not show any significant difference. Also, the expression of specific genes of megakaryocyte lineage was compared with control group. The expression of GATA2 and c-Mpl was significantly increased, GATA1 was not significantly decreased, and FLI1 was significantly decreased. Conclusion: MSC-MVs could improve the expression of specific megakaryocyte genes; however, there was no significant expression of CD markers. Further studies, including the evaluation of late stages of megakaryocyte differentiation, are required to evaluate platelet production and shedding.

15.
Eur J Haematol ; 83(4): 302-12, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19500134

RESUMEN

To evaluate nuclear factor-kappaB (NF-kappaB) activity in primary myeloma cells from myeloma patients, we confirmed that the expression levels of CD54 showed a good correlation with the levels of DNA binding activity for NF-kappaB in human myeloma cell lines, and thus analyzed the expression levels of CD54 on CD38(++) plasma cell fractions as one of NF-kappaB activity. Primary myeloma cells unexpectedly showed constitutively lower expressions of CD54 than normal bone marrow (BM) plasma cells. Furthermore, the expression levels of CD54 on these plasma cells showed a significant correlation with the plasma levels of CXCL12 stromal cell-derived factor-1alpha (SDF-1alpha) in their BM aspirates, and the expressions of CXCR4, the receptor for CXCL12, decreased on primary myeloma cells compared with normal BM plasma cells. It was also confirmed that the addition of CXCL12 to the in vitro culture significantly induced the up-regulation of CD54 expression in primary myeloma cells. In addition, myeloma cells with lower expressions of CD54 were more unstable in the in vitro culture, resulting in a marked reduction of the viable cell number. In the immunohistochemical analysis of BM aspirates, myeloma cells with lower CD54 expression resided in the perivascular regions. Therefore, these data suggest that primary myeloma cells exhibit constitutively lower CD54 that might be partially regulated by CXCL12, and their localizations in the BM may be associated with the expression levels of CD54.


Asunto(s)
Médula Ósea/química , Quimiocina CXCL12/análisis , Molécula 1 de Adhesión Intercelular/análisis , Mieloma Múltiple/química , Supervivencia Celular , Quimiocina CXCL12/fisiología , Regulación de la Expresión Génica , Humanos , Mieloma Múltiple/patología , Receptores CXCR4/análisis , Distribución Tisular , Células Tumorales Cultivadas
16.
Adv Pharm Bull ; 9(1): 38-47, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31011556

RESUMEN

All cells encounter various signals coming from the surrounding environment and they need to receive and respond to these signals in order to perform their functions. Cell surface receptors are responsible for signal transduction .Platelets are blood cells which perform several functions using diverse receptors. Platelet concentrate is one of the most consumed blood products. However, due to the short lifespan of the platelets and platelets damage during storage, we face shortage of platelet products. One of the damages that platelets undergo during storage is the loss of surface receptors. Since cell surface receptors are responsible for all cell functions, the loss of platelet receptors reduces the quality of platelet products. In this study, we reviewed the important receptors involved in platelet activation and their associated signaling pathways. We also looked at the platelet receptors that shed during storage and the causes of this incident. We found that GPIbα, P-selectin, CD40 and GPVI are platelet receptors that fall during platelet storage at room temperature. Considering that GPVI and GPIbα are the most important receptors which involved in platelet activation, their shedding can cause decrease in platelet activation after transfusion and decrease thrombus consistence. Shear stress and platelet contact with the container wall are among the mechanisms discussed in this process, but studies in this area have to be continued.

17.
Br J Haematol ; 142(5): 754-65, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18537967

RESUMEN

The survival and proliferation of human myeloma cells are considered to be heavily dependent on the microenvironment of bone marrow (BM). This study confirmed that galectin-1 (Gal-1) and SDF-1alpha were produced by bone marrow mononuclear cells of myeloma patients. The addition of Gal-1 and SDF-1alpha to a serum-free synthetic medium, maintained the viability of primary myeloma cells for 2 weeks similar to that before culture. While Gal-1 reduced the viable cell number in CD45RA(+) B cell lines, it maintained the viability of CD45(-) U266 and CD45RA(-)RO(+) ILKM3 myeloma cell lines in the synthetic medium. This was confirmed with the transfection of the PTPRC (CD45) RA, -RB, or -RO gene into CD45(-) U266 cells. The combination of Gal-1 and SDF-1alpha significantly induced phosphorylation of Akt and IkB, while the phosphorylation of ERK1/2 was significantly reduced in CD45RA(+) U266 and Raji cells but not CD45(-) or CD45RA(-) U266 cells. Furthermore, we confirmed that Gal-1 bound to CD45RA in CD45RA(+) Raji cells, and also physically interacted with beta1-integrin by immunoprecipitation followed by Western blotting and confocal microscopy. The results suggest that Gal-1 has two different actions depending on its binding partner, and supports the survival of CD45RA(-) myeloma cells.


Asunto(s)
Células de la Médula Ósea/metabolismo , Quimiocina CXCL12/metabolismo , Galectina 1/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Mieloma Múltiple/metabolismo , Humanos , Proteínas I-kappa B , Técnicas In Vitro , Integrina beta1 , Antígenos Comunes de Leucocito/genética , Proteína Quinasa 1 Activada por Mitógenos , Proteína Quinasa 3 Activada por Mitógenos , Mieloma Múltiple/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt
18.
Cell J ; 20(1): 19-24, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29308614

RESUMEN

OBJECTIVES: Angiogenesis, the process of formation of new blood vessels, is essential for development of solid tumors. At first, it was first assumed that angiogenesis is not implicated in the development of acute myeloid leukemia (AML) as a liquid tumor. One of the most important elements in bone marrow microenvironment is mesenchymal stem cells (MSCs). These cells possess an intrinsic tropism for sites of tumor in various types of cancers and have an impact on solid tumors growth by affecting the angiogenic process. But so far, our knowledge is limited about MSCs' role in liquid tumors angiogenesis. By increasing our knowledge about the role of MSCs on angiogenesis, new therapeutic strategies can be used to improve the status of patients with leukemia. MATERIALS AND METHODS: In this experimental study, HL-60, K562 and U937 cells were separately co-cultured with bone marrow derived-MSCs and after 8, 16 and 24 hours, alterations in the expression of 10 chemokine genes involved in angiogenesis, were evaluated by quantitative real time-polymerase chain reaction (qRT-PCR). Mono-cultures of leukemia cell lines were used as controls. RESULTS: We observed that in HL-60 and K562 cells co-cultured with MSCs, the expression of CXCL10 and CXCL3 genes are increased, respectively as compared to the control cells. Also, in U937 cells co-cultured with MSCs, the expression of CXCL6 gene was upgraded. Moreover in U937 cells, CCL2 gene expression in the first 16 hours was lower than the control cells, while within 24 hours its expression augmented. CONCLUSIONS: Our observations, for the first time, demonstrated that bone marrow (BM)-MSCs are able to alter the expression profile of chemokine genes involved in angiogenesis, in acute myeloid leukemia cell lines. MSCs cause different effects on angiogenesis in different leukemia cell lines; in some cases, MSCs promote angiogenesis, and in others, inhibit it.

20.
Adv Pharm Bull ; 8(2): 291-296, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30023331

RESUMEN

Purpose: Mesenchymal stem cells (MSCs) play an important role in the proliferation and differentiation of hematopoietic stem cells (HSCs) in the bone marrow via cell-to-cell contact, as well as secretion of cytokines and microvesicles (MVs). In this study, we investigated the effect of mesenchymal stem cell-derived microvesicles (MSC-MVs) on erythroid differentiation of umbilical cord blood-derived CD34+ cells. Methods: In this descriptive study, CD34+ cells were cultured with mixture of SCF (10 ng/ml) and rhEPO (5 U/ml) cytokines in complete IMDM medium as positive control group. Then, in MV1- and MV2-groups, microvesicles at 10 and 20 µg/ml concentration were added. After 72 hours, erythroid specific markers (CD71 and CD235a) and genes (HBG1, GATA1, FOG1 and NFE2) were assessed by flow cytometry and qRT-PCR, respectively. Results: The expression of specific markers of the erythroid lineages (CD71 and GPA) in the presence of different concentration of microvesicles were lower than that of the control group (P<0.001). Also, the expression of specific genes of the erythroid lineages (NFE2, FOG1, GATA1, and HBG1) was investigated in comparison to the internal control (GAPDH). Among all of them, HBG1 and FOG1 genes were significantly decreased to the control group (P<0.0001) but GATA1 and NFE2 gene expressions was not significant. Conclusion: The results of this study showed that MSC-MVs decrease the erythroid differentiation of umbilical cord blood-derived CD34+ cells. Therefore, MSC-MVs play a key role in the regulation of normal erythropoiesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA