Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 205: 107243, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815881

RESUMEN

BACKGROUND: As a political, economic, and cultural exchange channel between ancient China and countries in Asia, Europe, and Africa, the Silk Road has promoted political, trade, and cultural exchanges between China and foreign countries in Chinese history and also promoted the development of traditional Chinese medicine. METHODS: This article summarizes the introduction of medicinal materials from the Han to Qing Dynasties, spanning approximately 2000 years. RESULTS: A total of 235 types of medicinal plant materials were imported. An analysis of 178 medicinal herbs of known origin, belonging to 72 families revealed their effectiveness in treating 20 diseases. The maximum number of medicinal herbs used to treat gastrointestinal and digestive disorders (GAS) was 122. The applications and origin of exotic medicinal materials, including draconis sanguis and olibanum have changed during the development of the Silk Road. Imported medicinal materials are affected by five factors, including local demand, adaptability, cultural exchange, scarcity, and medical theory. Five modes for introducing medicinal materials include the onshore Silk Road, the maritime Silk Road, diplomatic envoys and gifts, overseas Chinese, cultural exchange, and medical integration. The application of exotic medicinal materials expands the resources and application fields of traditional Chinese medicine, enriching the theory of traditional Chinese medicine. CONCLUSION: Traditional Chinese medicinal compounds introduced to China through the ancient Silk Road not only promoted their integration into foreign medicine but also had long-lasting impacts to date and over a wide range, thereby considerably affecting the pharmaceutical and general healthcare industries.


Asunto(s)
Medicina Tradicional China , Plantas Medicinales , Plantas Medicinales/química , Plantas Medicinales/clasificación , Humanos , China , Medicamentos Herbarios Chinos/uso terapéutico , Comercio
2.
PeerJ ; 11: e15089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090105

RESUMEN

Hyperosmolality-gated calcium-permeable channels (OSCA) are Ca2 + nonselective cation channels that contain the calcium-dependent DUF221 domain, which plays an important role in plant response to stress and growth. However, the OSCA gene has not been fully identified and analyzed in sunflowers. In this study, we comprehensively analyzed the number, structure, collinearity, and phylogeny of the OSCA gene family in the sunflower, six Compositae species (Arctium lappa, Chrysanthemum morifolium, Cichorium endivia, Cichorium intybus, Lactuca sativa var. Angustata, and Carthamus tinctorius), and six other plants (soybean, Arabidopsis thaliana, rice, grape, and maize). The expression of the sunflower OSCA gene in nine different tissues, six different hormones, and NaCl stress conditions were analyzed based on transcriptome data and qRT-PCR. A total of 15 OSCA proteins, distributed on 10 chromosomes, were identified in the sunflower, and all of them were located in the endoplasmic reticulum. Using the phylogenetic tree, collinearity, gene structure, and motif analysis of the six Compositae species and six other plants, we found that the sunflower OSCA protein had only three subfamilies and lacked the Group 4 subfamily, which is conserved in the evolution of Compositae and subject to purification selection. The OSCA gene structure and motif analysis of the sunflower and six Compositae showed that there was a positive correlation between the number of motifs of most genes and the length of the gene, different subfamilies had different motifs, and the Group 4 subfamily had the smallest number of genes and the simplest gene structure. RNA-seq and qRT-PCR analysis showed that the expression levels of most OSCA genes in the sunflower changed to varying degrees under salt stress, and HaOSCA2.6 and HaOSCA3.1 were the most important in the sunflower's response to salt stress. The coexpression network of the sunflower genes under salt stress was constructed based on weighted gene co-expression network analysis (WGCNA). In conclusion, our findings suggest that the OSCA gene family is conserved during the sunflower's evolution and plays an important role in salt tolerance. These results will deepen our understanding of the evolutionary relationship of the sunflower OSCA gene family and provide a basis for their functional studies under salt stress.


Asunto(s)
Asteraceae , Helianthus , Helianthus/genética , Cloruro de Sodio/metabolismo , Filogenia , Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA