Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635962

RESUMEN

Protein S-acylation catalyzed by protein S-acyl transferases (PATs) is a reversible lipid modification regulating protein targeting, stability, and interaction profiles. PATs are encoded by large gene families in plants, and many proteins including receptor-like cytoplasmic kinases (RLCKs) and receptor-like kinases (RLKs) are subject to S-acylation. However, few PATs have been assigned substrates, and few S-acylated proteins have known upstream enzymes. We report that Arabidopsis (Arabidopsis thaliana) class A PATs redundantly mediate pollen tube guidance and participate in the S-acylation of POLLEN RECEPTOR KINASE1 (PRK1) and LOST IN POLLEN TUBE GUIDANCE1 (LIP1), a critical RLK or RLCK for pollen tube guidance, respectively. PAT1, PAT2, PAT3, PAT4, and PAT8, collectively named PENTAPAT for simplicity, are enriched in pollen and show similar subcellular distribution. Functional loss of PENTAPAT reduces seed set due to male gametophytic defects. Specifically, pentapat pollen tubes are compromised in directional growth. We determine that PRK1 and LIP1 interact with PENTAPAT, and their S-acylation is reduced in pentapat pollen. The plasma membrane (PM) association of LIP1 is reduced in pentapat pollen, whereas point mutations reducing PRK1 S-acylation affect its affinity with its interacting proteins. Our results suggest a key role of S-acylation in pollen tube guidance through modulating PM receptor complexes.

2.
Plant Cell ; 35(5): 1408-1428, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36748200

RESUMEN

Banana (Musa acuminata) fruits ripening at 30 °C or above fail to develop yellow peels; this phenomenon, called green ripening, greatly reduces their marketability. The regulatory mechanism underpinning high temperature-induced green ripening remains unknown. Here we decoded a transcriptional and post-translational regulatory module that causes green ripening in banana. Banana fruits ripening at 30 °C showed greatly reduced expression of 5 chlorophyll catabolic genes (CCGs), MaNYC1 (NONYELLOW COLORING 1), MaPPH (PHEOPHYTINASE), MaTIC55 (TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 55), MaSGR1 (STAY-GREEN 1), and MaSGR2 (STAY-GREEN 2), compared to those ripening at 20 °C. We identified a MYB transcription factor, MaMYB60, that activated the expression of all 5 CCGs by directly binding to their promoters during banana ripening at 20 °C, while showing a weaker activation at 30 °C. At high temperatures, MaMYB60 was degraded. We discovered a RING-type E3 ligase MaBAH1 (benzoic acid hypersensitive 1) that ubiquitinated MaMYB60 during green ripening and targeted it for proteasomal degradation. MaBAH1 thus facilitated MaMYB60 degradation and attenuated MaMYB60-induced transactivation of CCGs and chlorophyll degradation. By contrast, MaMYB60 upregulation increased CCG expression, accelerated chlorophyll degradation, and mitigated green ripening. Collectively, our findings unravel a dynamic, temperature-responsive MaBAH1-MaMYB60-CCG module that regulates chlorophyll catabolism, and the molecular mechanism underpinning green ripening in banana. This study also advances our understanding of plant responses to high-temperature stress.


Asunto(s)
Musa , Temperatura , Musa/genética , Musa/química , Musa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
3.
Blood ; 141(14): 1691-1707, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36638348

RESUMEN

Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias, and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has recently been reported to affect hematopoiesis. However, there is currently limited empirical evidence explaining the direct impact of gut microbiome on aging hematopoiesis. In this study, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed a significant increment in lymphoid differentiation and decrease in myeloid differentiation in aged recipient mice. Furthermore, FMT from young mice rejuvenated aged HSCs with enhanced short-term and long-term hematopoietic repopulation capacity. Mechanistically, single-cell RNA sequencing deciphered that FMT from young mice mitigated inflammatory signals, upregulated the FoxO signaling pathway, and promoted lymphoid differentiation of HSCs during aging. Finally, integrated microbiome and metabolome analyses uncovered that FMT reshaped gut microbiota composition and metabolite landscape, and Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our study highlights the paramount importance of the gut microbiota in HSC aging and provides insights into therapeutic strategies for aging-related hematologic disorders.


Asunto(s)
Trasplante de Microbiota Fecal , Células Madre Hematopoyéticas , Animales , Ratones , Células Madre Hematopoyéticas/metabolismo , Inflamación/terapia , Inflamación/metabolismo , Diferenciación Celular , Hematopoyesis
4.
Plant Biotechnol J ; 22(2): 413-426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37816143

RESUMEN

Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.


Asunto(s)
Arabidopsis , Musa , Celulosa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Musa/genética , Musa/metabolismo , Frutas/genética , Frutas/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
5.
Plant Biotechnol J ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856080

RESUMEN

Transcriptional regulation mechanisms underlying chilling injury (CI) development have been widely investigated in model plants and cold-sensitive fruits, such as banana (Musa acuminata). However, unlike the well-known NAC and WRKY transcription factors (TFs), the function and deciphering mechanism of heat shock factors (HSFs) involving in cold response are still fragmented. Here, we showed that hot water treatment (HWT) alleviated CI in harvested banana fruits accomplishing with reduced reactive oxygen species (ROS) accumulation and increased antioxidant enzyme activities. A cold-inducible but HWT-inhibited HSF, MaHsf24, was identified. Using DNA affinity purification sequencing (DAP-seq) combined with RNA-seq analyses, we found three heat shock protein (HSP) genes (MaHSP23.6, MaHSP70-1.1 and MaHSP70-1.2) and three antioxidant enzyme genes (MaAPX1, MaMDAR4 and MaGSTZ1) were the potential targets of MaHsf24. Subsequent electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and dual-luciferase reporter (DLR) analyses demonstrated that MaHsf24 repressed the transcription of these six targets via directly binding to their promoters. Moreover, stably overexpressing MaHsf24 in tomatoes increased cold sensitivity by suppressing the expressions of HSPs and antioxidant enzyme genes, while HWT could recover cold tolerance, maintaining higher levels of HSPs and antioxidant enzyme genes, and activities of antioxidant enzymes. In contrast, transiently silencing MaHsf24 by virus-induced gene silencing (VIGS) in banana peels conferred cold resistance with the upregulation of MaHSPs and antioxidant enzyme genes. Collectively, our findings support the negative role of MaHsf24 in cold tolerance, and unravel a novel regulatory network controlling bananas CI occurrence, concerning MaHsf24-exerted inhibition of MaHSPs and antioxidant enzyme genes.

6.
Plant Physiol ; 192(3): 1969-1981, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36794407

RESUMEN

Banana (Musa acuminata) fruit ripening under high temperatures (>24 °C) undergoes green ripening due to failure of chlorophyll degradation, which greatly reduces marketability. However, the mechanism underlying high temperature-repressed chlorophyll catabolism in banana fruit is not yet well understood. Here, using quantitative proteomic analysis, 375 differentially expressed proteins were identified in normal yellow and green ripening in banana. Among these, one of the key enzymes involved in chlorophyll degradation, NON-YELLOW COLORING 1 (MaNYC1), exhibited reduced protein levels when banana fruit ripened under high temperature. Transient overexpression of MaNYC1 in banana peels resulted in chlorophyll degradation under high temperature, which weakens the green ripening phenotype. Importantly, high temperature induced MaNYC1 protein degradation via the proteasome pathway. A banana RING E3 ligase, NYC1-interacting protein 1 (MaNIP1), was found to interact with and ubiquitinate MaNYC1, leading to its proteasomal degradation. Furthermore, transient overexpression of MaNIP1 attenuated MaNYC1-induced chlorophyll degradation in banana fruits, indicating that MaNIP1 negatively regulates chlorophyll catabolism by affecting MaNYC1 degradation. Taken together, the findings establish a post-translational regulatory module of MaNIP1-MaNYC1 that mediates high temperature-induced green ripening in bananas.


Asunto(s)
Musa , Musa/genética , Musa/metabolismo , Temperatura , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteómica , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Cell Environ ; 47(4): 1128-1140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38093692

RESUMEN

High temperatures (>24°C) prevent the development of a yellow peel on bananas called green ripening, owing to the inhibition of chlorophyll degradation. This phenomenon greatly reduces the marketability of banana fruit, but the mechanisms underlining high temperature-repressed chlorophyll catabolism need to be elucidated. Herein, we found that the protein accumulation of chlorophyll catabolic enzyme MaSGR1 (STAY-GREEN 1) was reduced when bananas ripened at high temperature. Transiently expressing MaSGR1 in banana peel showed its positive involvement in promoting chlorophyll degradation under high temperature, thereby weakening green ripening phenotype. Using yeast two-hybrid screening, we identified a RING-type E3 ubiquitin ligase, MaRZF1 (RING Zinc Finger 1), as a putative MaSGR1-interacting protein. MaRZF1 interacts with and targets MaSGR1 for ubiquitination and degradation via the proteasome pathway. Moreover, upregulating MaRZF1 inhibited chlorophyll degradation, and attenuated MaSGR1-promoted chlorophyll degradation in bananas during green ripening, indicating that MaRZF1 negatively regulates chlorophyll catabolism via the degradation of MaSGR1. Taken together, MaRZF1 and MaSGR1 form a regulatory module to mediate chlorophyll degradation associated with high temperature-induced green ripening in bananas. Therefore, our findings expand the understanding of posttranslational regulatory mechanisms of temperature stress-caused fruit quality deterioration.


Asunto(s)
Musa , Temperatura , Musa/genética , Musa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
BMC Neurol ; 24(1): 218, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918722

RESUMEN

BACKGROUND: Growing evidence indicated that to develop of atherosclerosis observed more often by people with Alzheimer's disease (AD), but the underlying mechanism is not fully clarified. Considering that amyloid-ß (Aß) deposition in the brain is the key pathophysiology of AD and plasma Aß is closely relate to Aß deposition in the brain, in the present study, we investigated the relationships between atherosclerosis and plasma Aß levels. METHODS: This was a population based cross-sectional study. Patients with high risk of atherosclerosis from Qubao Village, Xi'an were underwent carotid ultrasound for assessment of atherosclerosis. Venous blood was collected on empty stomach in the morning and plasma Aß1-40 and Aß1-42 levels were measured using ELISA. Multivariate logistic regression analysis was performed to investigate the relationships between carotid atherosclerosis (CAS) and plasma Aß levels. RESULTS: Among 344 patients with high risk of atherosclerosis, 251(73.0%) had CAS. In the univariate analysis, the plasma Aß levels had no significant differences between CAS group and non-CAS group (Aß1-40: 53.07 ± 9.24 pg/ml vs. 51.67 ± 9.11pg/ml, p = 0.211; Aß1-42: 40.10 ± 5.57 pg/ml vs. 40.70 pg/ml ± 6.37pg/ml, p = 0.285). Multivariate logistic analysis showed that plasma Aß levels were not associated with CAS (Aß1-40: OR = 1.019, 95%CI: 0.985-1.054, p = 0.270;Aß1-42: OR = 1.028, 95%CI: 0.980-1.079, p = 0.256) in the total study population. After stratified by hypertension, CAS was associated with plasma Aß1-40 positively (OR = 1.063, 95%CI: 1.007-1.122, p = 0.028) in the non-hypertension group, but not in hypertensive group. When the plasma Aß concentrations were classified into four groups according to its quartile, the highest level of plasma Aß1-40 group was associated with CAS significantly (OR = 4.465, 95%CI: 1.024-19.474, p = 0.046). CONCLUSION: Among patients with high risk of atherosclerosis, CAS was associated with higher plasma Aß1-40 level in non-hypertension group, but not in hypertension group. These indicated that atherosclerosis is associated with plasma Aß level, but the relationship may be confounded by hypertension.


Asunto(s)
Péptidos beta-Amiloides , Aterosclerosis , Fragmentos de Péptidos , Humanos , Masculino , Femenino , Péptidos beta-Amiloides/sangre , Estudios Transversales , Anciano , Persona de Mediana Edad , Aterosclerosis/sangre , Aterosclerosis/epidemiología , Fragmentos de Péptidos/sangre , Factores de Riesgo , Hipertensión/sangre , Hipertensión/epidemiología
9.
Cereb Cortex ; 33(19): 10463-10474, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37566910

RESUMEN

Speech comprehension requires listeners to rapidly parse continuous speech into hierarchically-organized linguistic structures (i.e. syllable, word, phrase, and sentence) and entrain the neural activities to the rhythm of different linguistic levels. Aging is accompanied by changes in speech processing, but it remains unclear how aging affects different levels of linguistic representation. Here, we recorded magnetoencephalography signals in older and younger groups when subjects actively and passively listened to the continuous speech in which hierarchical linguistic structures of word, phrase, and sentence were tagged at 4, 2, and 1 Hz, respectively. A newly-developed parameterization algorithm was applied to separate the periodically linguistic tracking from the aperiodic component. We found enhanced lower-level (word-level) tracking, reduced higher-level (phrasal- and sentential-level) tracking, and reduced aperiodic offset in older compared with younger adults. Furthermore, we observed the attentional modulation on the sentential-level tracking being larger for younger than for older ones. Notably, the neuro-behavior analyses showed that subjects' behavioral accuracy was positively correlated with the higher-level linguistic tracking, reversely correlated with the lower-level linguistic tracking. Overall, these results suggest that the enhanced lower-level linguistic tracking, reduced higher-level linguistic tracking and less flexibility of attentional modulation may underpin aging-related decline in speech comprehension.


Asunto(s)
Comprensión , Habla , Adulto , Humanos , Anciano , Lingüística , Magnetoencefalografía , Lenguaje
10.
PLoS Genet ; 17(4): e1009505, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886546

RESUMEN

The development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components. The disassembly of post-fusion SNARE complexes is controlled by the AAA+ ATPase N-ethylmaleimide-sensitive factor (Sec18/NSF) and soluble NSF attachment protein (Sec17/α-SNAP) in yeast and metazoans. Although non-canonical α-SNAPs have been functionally characterized in soybeans, the biological function of canonical α-SNAPs has yet to be demonstrated in plants. We report here that the canonical α-SNAP in Arabidopsis is essential for male and female gametophytic development. Functional loss of the canonical α-SNAP in Arabidopsis results in gametophytic lethality by arresting the first mitosis during gametogenesis. We further show that Arabidopsis α-SNAP encodes two isoforms due to alternative splicing. Both isoforms interact with the Arabidopsis homolog of NSF whereas have distinct subcellular localizations. The presence of similar alternative splicing of human α-SNAP indicates that functional distinction of two α-SNAP isoforms is evolutionarily conserved.


Asunto(s)
Arabidopsis/genética , Gametogénesis/genética , Desarrollo de la Planta/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Empalme Alternativo/genética , Arabidopsis/crecimiento & desarrollo , Células Germinativas de las Plantas/crecimiento & desarrollo , Mitosis/genética , Proteínas Sensibles a N-Etilmaleimida/genética , Isoformas de Proteínas/genética
11.
Angew Chem Int Ed Engl ; 63(18): e202402198, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38319045

RESUMEN

Although the synthesis of mechanically interlocked molecules has been extensively researched, selectively constructing homogeneous linear [4]catenanes remains a formidable challenge. Here, we selectively constructed a homogeneous linear metalla[4]catenane in a one-step process through the coordination-driven self-assembly of a bidentate benzothiadiazole derivative ligand and a binuclear half-sandwich rhodium precursor. The formation of metalla[4]catenanes was facilitated by cooperative interactions between strong sandwich-type π-π stacking and non-classical hydrogen bonds between the components. Moreover, by modulating the aromatic substituents on the binuclear precursor, two homogeneous metalla[2]catenanes were obtained. The molecular structures of these metallacatenanes were unambiguously characterized by single-crystal X-ray diffraction analysis. Additionally, reversible structural transformation between metal-catenanes and the corresponding metallarectangles could be achieved by altering their concentration, as confirmed by mass spectrometry and NMR spectroscopy studies.

12.
Plant J ; 110(6): 1651-1669, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395128

RESUMEN

Fruit ripening is a complex developmental process, which is modulated by both transcriptional and post-translational events. Control of fruit ripening is important in maintaining moderate quality traits and minimizing postharvest deterioration. In this study, we discovered that the transcription factor MaMYB4 acts as a negative regulator of fruit ripening in banana. The protein levels of MaMYB4 decreased gradually with banana fruit ripening, paralleling ethylene production, and decline in firmness. DNA affinity purification sequencing combined with RNA-sequencing analyses showed that MaMYB4 preferentially binds to the promoters of various ripening-associated genes including ethylene biosynthetic and cell wall modifying genes. Furthermore, ectopic expression of MaMYB4 in tomato delayed tomato fruit ripening, which was accompanied by downregulation of ethylene biosynthetic and cell wall modifying genes. Importantly, two RING finger E3 ligases MaBRG2/3, whose protein accumulation increased progressively with fruit ripening, were found to interact with and ubiquitinate MaMYB4, contributing to decreased accumulation of MaMYB4 during fruit ripening. Transient overexpression of MaMYB4 and MaBRG2/3 in banana fruit ripening delayed or promoted fruit ripening by inhibiting or stimulating ethylene biosynthesis, respectively. Taken together, we demonstrate that MaMYB4 negatively modulates banana fruit ripening, and that MaMYB4 abundance could be regulated by protein ubiquitination, thus providing insights into the role of MaMYB4 in controlling fruit ripening at both transcriptional and post-translational levels.


Asunto(s)
Musa , Etilenos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Musa/genética , Musa/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Plant Physiol ; 188(3): 1665-1685, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34792564

RESUMEN

Ripening of fleshy fruits involves both diverse post-translational modifications (PTMs) and dynamic transcriptional reprogramming, but the interconnection between PTMs, such as protein phosphorylation and transcriptional regulation, in fruit ripening remains to be deciphered. Here, we conducted a phosphoproteomic analysis during banana (Musa acuminata) ripening and identified 63 unique phosphopeptides corresponding to 49 proteins. Among them, a Musa acuminata basic leucine zipper transcription factor21 (MabZIP21) displayed elevated phosphorylation level in the ripening stage. MabZIP21 transcript and phosphorylation abundance increased during banana ripening. Genome-wide MabZIP21 DNA binding assays revealed MabZIP21-regulated functional genes contributing to banana ripening, and electrophoretic mobility shift assay, chromatin immunoprecipitation coupled with quantitative polymerase chain reaction, and dual-luciferase reporter analyses demonstrated that MabZIP21 stimulates the transcription of a subset of ripening-related genes via directly binding to their promoters. Moreover, MabZIP21 can be phosphorylated by MaMPK6-3, which plays a role in banana ripening, and T318 and S436 are important phosphorylation sites. Protein phosphorylation enhanced MabZIP21-mediated transcriptional activation ability, and transient overexpression of the phosphomimetic form of MabZIP21 accelerated banana fruit ripening. Additionally, MabZIP21 enlarges its role in transcriptional regulation by activating the transcription of both MaMPK6-3 and itself. Taken together, this study reveals an important machinery of protein phosphorylation in banana fruit ripening in which MabZIP21 is a component of the complex phosphorylation pathway linking the upstream signal mediated by MaMPK6-3 with transcriptional controlling of a subset of ripening-associated genes.


Asunto(s)
Frutas/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Musa/crecimiento & desarrollo , Musa/genética , Fosforilación/genética , Factores de Transcripción/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Musa/metabolismo , Factores de Transcripción/genética
14.
Inorg Chem ; 62(4): 1297-1305, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36648145

RESUMEN

The construction of metal-organic cages (MOCs) with specific structures and fluorescence sensing properties is of much importance and challenging. Herein, a novel phenanthroline-based metal-organic cage, [Cd3L3·6MeOH·6H2O] (1), was synthesized by metal-directed assembly of the ligand 3,3'-[(1E,1'E)-(1,10-phenanthroline-2,9-diyl)bis(ethene-2,1-diyl)]dibenzoic acid (H2L) and CdI2 using a solvothermal method. According to single-crystal X-ray analysis, cage 1 exhibits a rare trefoil-shaped structure. Meanwhile, the discrete MOCs are further stacked into a 3D porous supramolecular structure through abundant intermolecular C-H···O interactions. Additionally, through exploration of fluorescence sensing on cations, anions, and antibiotics in aqueous solution, the experimental results indicate that cage 1 has excellent fluorescence sensing abilities for Fe3+, Cr2O72-, and nitrofuran and nitroimidazole antibiotics. The sensing ability of 1 remains unaltered for five cycles toward all analytes. The above results suggested that cage 1 can be considered a potential multiple sensor for the detection of Fe3+, Cr2O72-, and some antibiotics.

15.
BMC Musculoskelet Disord ; 24(1): 296, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37060059

RESUMEN

BACKGROUND: Osteoporosis has been associated with several disorders; however, there have been only a limited number of reports on heroin-induced osteoporosis. We report a rare case presented with bilateral femoral neck insufficiency fractures without trauma history, caused by heroin-induced osteoporosis. We collect sufficient clinical data and further shed light on the potential mechanism of how heroin affects bone formation and decreases bone density. CASE PRESENTATION: A 55-year-old male patient with normal body mass index (BMI) suffered from bilateral hips pain gradually without trauma history. He had intravenous heroin addiction for more than 30 years. Radiography revealed bilateral femoral neck insufficiency fractures. Laboratory tests showed elevated alkaline phosphatase levels (365 U/L) and decreased inorganic phosphate (1.7 mg/dL), calcium (8.3 mg/dL), 25-(OH)D3 (20.3 ng/ml) and testosterone levels (2.12 ng/ml). Magnetic resonance imaging (MRI) revealed increased signals on STIR images over the sacral ala and bilateral proximal femur, and multiple band-like lesions at the vertebrae of the thoracic and lumbar spine. Bone densitometry revealed osteoporosis with a T score of minus 4.0. The screen for urine morphine was positive (> 1000 ng/ml). Through assessment of the patient, the diagnosis was insufficiency fractures of bilateral femoral neck caused by opioid-induced osteoporosis. After hemiarthroplasty, regular medication with vitamin D3 and calcium, and detoxification treatment, and the patient recovered well after 6 months of follow-up. CONCLUSION: The aim of this report is to highlight the laboratory and radiology findings in a case of osteoporosis caused by opioid addiction and discuss the potential pathway by which osteoporosis is induced by opioids. When an unusual osteoporosis presents with insufficiency fractures, heroin-induced osteoporosis should be considered.


Asunto(s)
Fracturas del Cuello Femoral , Fracturas por Estrés , Osteoporosis , Masculino , Humanos , Adulto , Persona de Mediana Edad , Cuello Femoral/cirugía , Heroína , Fracturas por Estrés/inducido químicamente , Fracturas por Estrés/diagnóstico por imagen , Calcio , Osteoporosis/complicaciones , Osteoporosis/diagnóstico por imagen , Densidad Ósea , Fracturas del Cuello Femoral/inducido químicamente , Fracturas del Cuello Femoral/diagnóstico por imagen
16.
Ecotoxicol Environ Saf ; 253: 114633, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36889228

RESUMEN

The development and utilization of saline-alkaline water, an important backup resource, has received widespread attention. However, the underuse of saline-alkaline water, threatened by the single species of saline-alkaline aquaculture, seriously affects the development of the fishery economy. In this work, a 30-day NaHCO3 stress experimental study combined with analyses of untargeted metabolomics, transcriptome, and biochemical approaches was conducted on crucian carp to provide a better understanding of the saline-alkaline stress response mechanism in freshwater fish. This work revealed the relationships among the biochemical parameters, endogenous differentially expressed metabolites (DEMs), and differentially expressed genes (DEGs) in the crucian carp livers. The biochemical analysis showed that NaHCO3 exposure changed the levels of several physiological parameters associated with the liver, including antioxidant enzymes (SOD, CAT, GSH-Px), MDA, AKP, and CPS. According to the metabolomics study, 90 DEMs are involved in various metabolic pathways such as ketone synthesis and degradation metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, and linoleic acid metabolism. In addition, transcriptomics data analysis showed that a total of 301 DEGs were screened between the control group and the high NaHCO3 concentration group, of which 129 up-regulated genes and 172 down-regulated genes. Overall, NaHCO3 exposure could cause lipid metabolism disorders and induce energy metabolism imbalance in the crucian carp liver. Simultaneously, crucian carp might regulate its saline-alkaline resistance mechanism by enhancing the synthesis of glycerophospholipid metabolism, ketone bodies, and degradation metabolism, at the same time increasing the vitality of antioxidant enzymes (SOD, CAT, GSH-Px) and nonspecific immune enzyme (AKP). Herein, all results will provide new insights into the molecular mechanisms underlying the stress responses and tolerance to saline-alkaline exposure in crucian carp.


Asunto(s)
Carpas , Carpa Dorada , Animales , Carpa Dorada/metabolismo , Carpas/genética , Multiómica , Antioxidantes/metabolismo , Hígado , Superóxido Dismutasa/metabolismo , Glicerofosfolípidos/metabolismo , Agua/metabolismo
17.
Molecules ; 28(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375148

RESUMEN

MOF-based luminescent sensors have garnered considerable attention due to their potential in recognition and discrimination with high sensitivity, selectivity, and fast response in the last decades. Herein, this work describes the bulk preparation of a novel luminescent homochiral MOF, namely, [Cd(s-L)](NO3)2 (MOF-1), from an enantiopure pyridyl-functionalized ligand with rigid binaphthol skeleton under mild synthetic condition. Except for the features of porosity and crystallinity, the MOF-1 has also been characterized with water-stability, luminescence, and homochirality. Most important, the MOF-1 exhibits highly sensitive molecular recognition toward the4-nitrobenzoic acid (NBC) and moderate enantioselective detection of proline, arginine, and 1-phenylethanol.

18.
Arch Orthop Trauma Surg ; 143(4): 1965-1972, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35278092

RESUMEN

INTRODUCTION: Open reduction and internal fixation with plates is the most widespread surgery in traumatic pubic symphysis diastasis. However, implant failure or recurrent diastasis was commonly observed during follow-up. The aim of our study was to evaluate the radiologic findings and clinical outcomes. MATERIALS AND METHODS: Sixty-five patients with traumatic pubic symphysis diastasis treated with plating between 2008 and 2019 were retrospectively reviewed. The exclusion criteria were a history of malignancy and age under 20 years. Radiographic outcomes were determined by radiograph findings, including pubic symphysis distance (PSD) and implant failure. Clinical outcomes were assessed according to the Majeed score at the final follow-up. RESULTS: Twenty-eight patients were finally included. Nine patients (32%) experienced implant failure, including four (14%) with screw loosening and five (18%) with plate breakage. Only one patient underwent revision surgery. Postoperatively, a significant increase in PSD was observed at 3 months and 6 months. Postoperative PSD was not significantly different between patients with single plating and double plating, but it was significantly greater in the implant-failure group than in the non-failure group. The Majeed score was similar between patients with single plating and double plating or between the implant-failure group and the non-failure group. Body mass index, number of plates, age, and initial injured PSD were not significantly different between the implant-failure group and the non-failure group. Only a significant male predominance was observed in the implant-failure group. CONCLUSION: A gradual increase in the symphysis distance and a high possibility of implant failure may be the distinguishing features of traumatic pubic symphysis diastasis fixation. The postoperative symphyseal distance achieved stability after 6 months, even after implant failure. Radiographic outcomes, such as increased symphysis distance, screw loosening, and plate breakage, did not affect clinical functional outcomes.


Asunto(s)
Diástasis de la Sínfisis Pubiana , Sínfisis Pubiana , Femenino , Humanos , Masculino , Adulto Joven , Adulto , Diástasis de la Sínfisis Pubiana/diagnóstico por imagen , Diástasis de la Sínfisis Pubiana/cirugía , Estudios Retrospectivos , Fijación Interna de Fracturas , Sínfisis Pubiana/diagnóstico por imagen , Sínfisis Pubiana/cirugía , Placas Óseas
19.
J Integr Plant Biol ; 65(1): 150-166, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36103229

RESUMEN

The ethylene insensitive 3/ethylene insensitive 3-like (EIN3/EIL) plays an indispensable role in fruit ripening. However, the regulatory mechanism that links post-translational modification of EIN3/EIL to fruit ripening is largely unknown. Here, we studied the expression of 13 MaEIL genes during banana fruit ripening, among which MaEIL9 displayed higher enhancement particularly in the ripening stage. Consistent with its transcript pattern, abundance of MaEIL9 protein gradually increased during the ripening process, with maximal enhancement in the ripening. DNA affinity purification (DAP)-seq analysis revealed that MaEIL9 directly targets a subset of genes related to fruit ripening, such as the starch hydrolytic genes MaAMY3D and MaBAM1. Stably overexpressing MaEIL9 in tomato fruit hastened fruit ripening, whereas transiently silencing this gene in banana fruit retarded the ripening process, supporting a positive role of MaEIL9 in fruit ripening. Moreover, oxidation of methionines (Met-129, Met-130, and Met-282) in MaEIL9 resulted in the loss of its DNA-binding capacity and transcriptional activation activity. Importantly, we identified MaEIL9 as a potential substrate protein of methionine sulfoxide reductase A MaMsrA4, and oxidation of Met-129, Met-130, and Met-282 in MaEIL9 could be restored by MaMsrA4. Collectively, our findings reveal a novel regulatory network controlling banana fruit ripening, which involves MaMsrA4-mediated redox regulation of the ethylene signaling component MaEIL9.


Asunto(s)
Musa , Musa/genética , Musa/metabolismo , Metionina/genética , Metionina/metabolismo , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Racemetionina/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Hu Li Za Zhi ; 70(5): 44-53, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-37740264

RESUMEN

BACKGROUND: Outpatient clinics in medical centers are the most common location where people seek medical treatment. Because they must provide patients with treatment information in a timely manner, good communication skills are a key competency for outpatient nurses. However, the tools available for communication behavior assessment are general and rarely tailored for outpatient settings. PURPOSE: The purpose was to develop a communication behavior inventory for outpatient nurses and to examine its reliability and validity. METHODS: During phase one, the authors conducted a literature search and synthesis, using the findings to develop the Outpatient Nurses Communication Behavior Inventory. During phase two, two expert validation rounds were conducted to confirm content validity. During phase three, 220 licensed outpatient nurses were recruited from a medical center in northern Taiwan to complete the instrument (December 2018 - January 2019.) The construct validity and internal consistency of the inventory were evaluated. RESULTS: The literature search and synthesis identified six domains of communication, including connect, introduce, communicate, ask, respond, and exit. A total of 25 items were generated. Following the two expert panel validation rounds, the six domains remained but the inventory items were reduced to 21. Both item-content validity index and scale-level content validity index were 1.0. In phase three, the results of the confirmatory factor analysis retained six factors with a total of 16 items. Model three showed that the inventory demonstrated goodness of fit (Χ ² = 155.75, p < .001, RMSEA = .06, GFI = .92, AGFI = .87, NNFI = .97, NFI = .95, Model AIC = 253.75). Internal consistency was demonstrated with a Cronbach's α of .89. CONCLUSIONS / IMPLICATIONS FOR PRACTICE: The Outpatient Nurses Communication Behavior Inventory exhibits good reliability and validity and may be used to assess outpatient nurses' communication behaviors and as a basis for education. The six CICARE (connect, introduce, communicate, ask, respond and exit) domains may be utilized to remind outpatient nurses to demonstrate effective communication consistently, promote outpatient nurses' communication with patients, and improve quality of care.


Asunto(s)
Enfermeras y Enfermeros , Pacientes Ambulatorios , Humanos , Reproducibilidad de los Resultados , Comunicación , Instituciones de Atención Ambulatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA