Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Environ Sci Technol ; 58(21): 9381-9392, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38747138

RESUMEN

Designing suitable catalysts for efficiently degrading volatile organic compounds (VOCs) is a great challenge due to the distinct variety and nature of VOCs. Herein, the suitability of different typical VOCs (toluene and acetone) over Pt-based catalysts and Mn2O3 was investigated carefully. The activity of Mn2O3 was inferior to Pt-loaded catalysts in toluene oxidation but showed superior ability for destroying acetone, while Pt loading could boost the catalytic activity of Mn2O3 for both acetone and toluene. This suitability could be determined by the physicochemical properties of the catalysts and the structure of the VOC since toluene destruction activity is highly reliant on Pt0 in the metallic state and linearly correlated with the amount of surface reactive oxygen species (Oads), while the crucial factor that affects acetone oxidation is the mobility of lattice oxygen (Olat). The Pt/Mn2O3 catalyst shows highly active Pt-O-Mn interfacial sites, favoring the generation of Oads and promoting Mn-Olat mobility, leading to its excellent performance. Therefore, the design of abundant active sites is an effective means of developing highly adaptive catalysts for the oxidation of different VOCs.


Asunto(s)
Oxidación-Reducción , Platino (Metal) , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Catálisis , Platino (Metal)/química , Óxidos/química , Compuestos de Manganeso/química
2.
J Environ Sci (China) ; 138: 450-457, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135410

RESUMEN

Hydrothermal stability is crucial for the practical application of deNOx catalyst on diesel vehicles, for the selective catalytic reduction of NOx with NH3 (NH3-SCR). SnO2-based materials possess superior hydrothermal stability, which is attractive for the development of NH3-SCR catalyst. In this work, a series of Ce-Nb/SnO2 catalysts, with Ce and Nb loading on SnO2 support, were prepared by impregnation method. It was found that, the NH3-SCR activities and hydrothermal stabilities of the Ce-Nb/SnO2 catalysts significantly varied with the impregnation sequences, and the Ce-Nb(f)/SnO2 catalyst that firstly impregnated Nb and then impregnated Ce exhibited the best performance. The characterization results revealed that Ce-Nb(f)/SnO2 possessed appropriate acidity and redox capability. Furthermore, the strong synergistic effect between Nb and Sn species stabilized the structure and maintained the dispersion of acid sites. This study may provide a new understanding for the effect of impregnation sequence on activity and hydrothermal stability and a new environmental-friendly NH3-SCR catalyst with potential applications for NOx removal from diesel and hydrogen-fueled engines.


Asunto(s)
Amoníaco , Niobio , Amoníaco/química , Oxidación-Reducción , Hidrógeno , Catálisis
3.
Angew Chem Int Ed Engl ; 63(11): e202318492, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38265308

RESUMEN

Monoatomic dispersion of precious metals on the surface of CeO2 nanocrystals is a highly practical approach for dramatically reducing the usage of precious metals while exploiting the unique properties of single-atom catalysts. However, the specific atomic sites for anchoring precious metal atoms on the CeO2 support and underlying chemical mechanism remain partially unknown. Herein, we show that the terminal hydroxyls on the (100) surface are the most stable sites for anchoring Ag atoms on CeO2 , indicating that CeO2 nanocubes are the most efficient substrates to achieve monoatomic dispersion of Ag. Importantly, the newly identified chemical mechanism for single-metal-atom dispersion on CeO2 nanocubes appears to be generic and can thus be extended to other precious metals (Pt and Pd). In fact, our experiments also show that atomically dispersed Pt/Pd species exhibit morphology- and temperature-dependent CO selectivity in the catalytic CO2 hydrogenation reaction.

4.
J Environ Sci (China) ; 123: 15-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521980

RESUMEN

Diesel vehicles have caused serious environmental problems in China. Hence, the Chinese government has launched serious actions against air pollution and imposed more stringent regulations on diesel vehicle emissions in the latest China VI standard. To fulfill this stringent legislation, two major technical routes, including the exhaust gas recirculation (EGR) and high-efficiency selective catalytic reduction (SCR) routes, have been developed for diesel engines. Moreover, complicated aftertreatment technologies have also been developed, including use of a diesel oxidation catalyst (DOC) for controlling carbon monoxide (CO) and hydrocarbon (HC) emissions, diesel particulate filter (DPF) for particle mass (PM) emission control, SCR for the control of NOx emission, and an ammonia slip catalyst (ASC) for the control of unreacted NH3. Due to the stringent requirements of the China VI standard, the aftertreatment system needs to be more deeply integrated with the engine system. In the future, aftertreatment technologies will need further upgrades to fulfill the requirements of the near-zero emission target for diesel vehicles.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/prevención & control , Emisiones de Vehículos/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Catálisis , China , Gasolina , Material Particulado/análisis , Vehículos a Motor
5.
Environ Sci Technol ; 56(13): 9744-9750, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35704790

RESUMEN

Thermal stability is crucial for the practical application of deNOx catalysts. Vanadia-based catalysts are widely applied for the selective catalytic reduction of NOx with NH3 (NH3-SCR). Generally, hydrothermal aging at high temperatures induces the deactivation of deNOx catalysts. However, in this work, a remarkable increase in low- and medium-temperature NH3-SCR activity was observed for a V2O5/TiO2 catalyst after hydrothermal aging treatment, especially at 750 °C for 16 h. After the vanadia-based catalyst was hydrothermally treated at 750 °C, the specific surface area decreased and the surface VOx density and surface V ratio increased significantly. Therefore, the aged catalyst presented more abundant polymeric vanadyl species than the fresh one. Furthermore, the redox capability was improved markedly after hydrothermal treatment due to the strong interaction of vanadia and titania, contributing to the NH3-SCR reaction. 750 °C is the optimal temperature to activate the V2O5/TiO2 catalyst, improving the SCR performance significantly. This study provides an in-depth understanding of vanadia-based catalysts for practical applications.


Asunto(s)
Amoníaco , Titanio , Catálisis , Oxidación-Reducción
6.
J Environ Sci (China) ; 112: 38-47, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34955221

RESUMEN

Alumina supported Pd catalyst (Pd/Al2O3) is active for complete oxidation of methane, while often suffers transient deactivation during the cold down process. Herein, heating and cooling cycle tests between 200 and 900°C and isothermal experiments at 650°C were conducted to investigate the influence of NOx on transient deactivation of Pd/θ-Al2O3 catalyst during the methane oxidation. It was found that the co-fed of NO alleviated transient deactivation in the cooling ramp from 800 to 500°C, which was resulted from the in situ formation of NO2 during the process of methane oxidation. Over the Pd/θ-Al2O3, thermogravimetric analysis and O2 temperature programmed oxidation measurements confirmed that transient deactivation was due to the decomposition of PdO particles and the hysteresis of Pd reoxidation, while the metal Pd entities were less active for methane oxidation than the PdO ones. CO pulse chemisorption and scanning transmission electron microscopy characterizations rule out the NO2 effect on Pd size change. Powder X-ray diffraction and X-ray photoelectron spectroscopy characterizations were used to obtain palladium status of Pd/θ-Al2O3 before and after reactions, indicating that in lean conditions at 650°C, the presence of NO2 increases the content of active PdO on the catalyst surface, thus benefits methane oxidation. Homogeneous reaction between CH4, O2, and NOx may be partially responsible for the alleviation above 650°C. The interesting research of alleviation in transient deactivation by NOx, the components co-existing in exhausts, are of great significance for the application.


Asunto(s)
Óxido de Aluminio , Metano , Catálisis , Oxidación-Reducción , Paladio
7.
J Am Chem Soc ; 143(27): 10454-10461, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34192873

RESUMEN

Vanadia-based catalysts have been widely used for catalyzing various reactions, including their long-standing application in the deNOx process. It has been commonly considered that various vanadium species dispersed on supports with a large surface area act as the catalytically active sites. However, the role of crystalline V2O5 in selective catalytic reduction of NOx with NH3 (NH3-SCR) remains unclear. In this study, a catalyst with low vanadia loading was synthesized, in which crystalline V2O5 was deposited on a TiO2 support that had been pretreated at a high temperature. Surprisingly, the catalyst, which had a large amount of crystalline V2O5, showed excellent low-temperature NH3-SCR activity. For the first time, crystalline V2O5 on low-vanadium-loading catalysts was found to be transformed to polymeric vanadyl species by the adsorption of NH3. The generated active polymeric vanadyl species played a crucial role in NH3-SCR, leading to remarkably enhanced catalytic performance at low temperatures. This new finding provides a fundamental understanding of the metal oxide-catalyzed chemical reaction and has important implications for the development and commercial applications of NH3-SCR catalysts.

8.
Environ Sci Technol ; 55(1): 240-248, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33337142

RESUMEN

The control of soot emission from diesel vehicles is of extraordinary importance to the environment, and catalytic removal of soot is a highly effective and clean method. Here, we report a novel, non-noble metal catalyst for application in the catalytic combustion of soot with superb activity and resistance to H2O and SO2. MnOx oxide was prepared via a hydrothermal method, and then, Cs and Co were loaded on MnOx by impregnation. The 5%Cs/1%Co/MnOx catalyst displayed excellent catalytic activity with values of T10 (332 °C), T50 (371 °C), and T90 (415 °C) under loose contact. The as-prepared catalysts were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), H2 temperature-programmed reduction (TPR), O2 temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS). The results suggest that, after the introduction of Cs and Co into the MnOx oxide, more NO2 molecules take part in soot oxidation, exhibiting higher NO2 utilization efficiency; this is due to the synergistic effects of multiple components (Cs, Co, and Mn) promoting the generation of more surface-active oxygen and then accelerating the reaction between NO2 and soot. This study provides significant insights into the development of high-efficiency catalysts for soot oxidation, and the developed 5%Cs/1%Co/MnOx catalyst is a promising candidate for application in diesel particulate filters.


Asunto(s)
Óxidos , Hollín , Catálisis , Oxidación-Reducción , Difracción de Rayos X
9.
Environ Sci Technol ; 55(23): 16175-16183, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34779625

RESUMEN

Cu-SSZ-39 exhibits excellent hydrothermal stability and is expected to be used for NOx purification in diesel vehicles. In this work, the selective catalytic reduction (SCR) activities in the presence or absence of NO2 were tested over Cu-SSZ-39 catalysts with different Cu contents. The results showed that the NOx conversion of Cu-SSZ-39 was improved by NO2 when NO2/NOx = 0.5, especially for the catalysts with low Cu loadings. The kinetic studies showed two kinetic regimes for fast SCR from 150 to 220 °C due to a change in the rate-controlling mechanism. The activity test and diffuse reflectance infrared Fourier transform spectra demonstrated that the reduction of NO mainly occurred on the Cu species in the absence of feed NO2, and when NO2/NO = 1, NO could react with NH4NO3 on the Brønsted acid sites in addition to undergoing reduction on Cu species. Thus, NO2 can promote the SCR reaction over Cu-SSZ-39 by facilitating the formation of surface nitrate species.


Asunto(s)
Amoníaco , Cobre , Catálisis , Cinética , Oxidación-Reducción
10.
Environ Sci Technol ; 55(10): 6995-7003, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33683111

RESUMEN

Mn-based oxides exhibit outstanding low-temperature activity for the selective catalytic reduction of NOx with NH3 (NH3-SCR) compared with other catalysts. However, the underlying principle responsible for the excellent low-temperature activity is not yet clear. Here, the atomic-level mechanism and activity-limiting factor in the NH3-SCR process over Mn-, Fe-, and Ce-based oxide catalysts are elucidated by a combination of first-principles calculations and experimental measurements. We found that the superior oxidative dehydrogenation performance toward NH3 of Mn-based catalysts reduces the energy barriers for the activation of NH3 and the formation of the key intermediate NH2NO, which is the rate-determining step in NH3-SCR over these oxide catalysts. The findings of this study advance the understanding of the working principle of Mn-based SCR catalysts and provide a fundamental basis for the development of future generation SCR catalysts with excellent low-temperature activity.


Asunto(s)
Amoníaco , Estrés Oxidativo , Catálisis , Oxidación-Reducción , Temperatura
11.
J Environ Sci (China) ; 104: 17-26, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33985720

RESUMEN

The control of ethyl acetate emissions from fermentation and extraction processes in the pharmaceutical industry is of great importance to the environment. We have developed three Mn2O3 catalysts by using different Mn precursors (MnCl2, Mn(CH3COO)2, MnSO4), named as Mn2O3-Cl, -Ac, -SO4. The tested catalytic activity results showed a sequence with Mn precursors as: Mn2O3-Cl > Mn2O3-Ac > Mn2O3-SO4. The Mn2O3-Cl catalyst reached a complete ethyl acetate conversion at 212℃ (75℃ lower than that of Mn2O3-SO4), and this high activity 100% could be maintained high at 212℃ for at least 100 hr. The characterization data about the physical properties of catalysts did not show an obvious correlation between the structure and morphology of Mn2O3 catalysts and catalytic performance, neither was the surface area the determining factor for catalytic activity in the ethyl acetate oxidation. Here we firstly found there is a close linear relationship between the catalytic activity and the amount of lattice oxygen species in the ethyl acetate oxidation, indicating that lattice oxygen species were essential for excellent catalytic activity. Through H2 temperature-programmed reduction (H2-TPR) results, we found that the lowest initial reduction temperature over the Mn2O3-Cl had stronger oxygen mobility, thus more oxygen species participated in the oxidation reaction, resulting in the highest catalytic performance. With convenient preparation, high efficiency, and stability, Mn2O3 prepared with MnCl2 will be a promising catalyst for removing ethyl acetate in practical application.


Asunto(s)
Compuestos de Manganeso , Óxidos , Acetatos , Catálisis , Oxidación-Reducción
12.
Environ Sci Technol ; 54(23): 15499-15506, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33200925

RESUMEN

Cu-SSZ-13 and Cu-SSZ-39, with similar structures, are both highly active and hydrothermally stable in the selective catalytic reduction of NOx with NH3 (NH3-SCR), attracting great attention for applications on diesel vehicles. In this study, it was interestingly found that NO2 has distinct effects on the NOx conversion over Cu-SSZ-13 and Cu-SSZ-39, with an inhibiting effect for Cu-SSZ-13 but a promoting effect for Cu-SSZ-39. The distinct NO2 effects were found to be associated with the differences in the reactivity of surface NH4NO3, a key intermediate for NH3-SCR, on these two Cu-based small-pore zeolites. Cu-SSZ-13 has excellent standard SCR activity, but the reactivity of surface NH4NO3 with NO is relatively low, which would induce the accumulation of NH4NO3 on the surface and thus inhibit NOx conversion. Surface Brønsted acid sites play key roles in the reduction of surface NH4NO3 by NO, and Cu-SSZ-39 showed much higher surface acidity than Cu-SSZ-13. Compared with Cu-SSZ-13, the intrinsic standard SCR activity of Cu-SSZ-39 was lower but NH4NO3 could be reduced by NO rapidly on Cu-SSZ-39, even faster than the reduction of NO by the adsorbed NH3 on Cu active sites; thus, NOx conversion was promoted by NO2 on Cu-SSZ-39. This work provides an improved understanding of fast SCR on Cu-based small-pore zeolites.


Asunto(s)
Amoníaco , Dióxido de Nitrógeno , Catálisis , Cobre , Oxidación-Reducción
13.
Environ Sci Technol ; 54(13): 7870-7878, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32544321

RESUMEN

The control of NOx emission from diesel vehicles is of great importance to the environment, and Cu-SAPO-34 is considered to be an effective catalyst for the abatement of NOx from diesel vehicles. Along with catalytic activity, hydrothermal stability is a key property for NOx abatement catalysts. The attack of Cu species and framework atoms by H2O may result in activity loss under both low/high temperature humid conditions, which are inevitable in practical application. Therefore, apart from good catalytic activity, hydrothermal stability under both low/high temperatures for Cu-SAPO-34 is also critical for NOx control in diesel vehicles. Three Cu-SAPO-34 samples were prepared by a one-pot hydrothermal method using propylamine, triethylamine, and morpholine, with Cu-TEPA (tetraethylenepentamine) as the cotemplate. The NH3-SCR activity and the effects of hydrothermal aging at 70 and 800 °C on these Cu-SAPO-34 samples were investigated. The type of cotemplate can affect the Si and Cu species in one-pot-synthesized Cu-SAPO-34 catalysts, so that the catalytic activity as well as the low/high temperature hydrothermal stability is affected by the choice of template. Generally speaking, Cu-SAPO-34 prepared using PA as cotemplate showed superior catalytic activity and hydrothermal stability under low/high temperatures compared with the other two catalysts, which makes PA a more suitable template for one-pot-synthesized Cu-SAPO-34 for use in NOx abatement from diesel vehicle exhaust.


Asunto(s)
Emisiones de Vehículos , Zeolitas , Amoníaco , Oxidación-Reducción
14.
J Environ Sci (China) ; 79: 273-279, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30784451

RESUMEN

The effect of acidity and redox capability over sulfuric acid-modified CeO2 catalysts were studied for the selective catalytic reduction of NOx with NH3 (NH3-SCR). The deposition of sulfate significantly enhanced the catalytic performance over CeO2. NOx conversion over 4H2SO4/CeO2 at 230-440 °C was higher than 90%. The strong redox capability of CeO2 could result in unselective NH3 oxidation and decrease high temperatures catalytic activity and N2 selectivity. The deposition of sulfate increased the acidity and weakened the redox capability, and then increased the high temperature NOx conversion and N2 selectivity. An appropriate level of acidity also promoted the activity at 190-250 °C over ceria-based catalysts, and with further increase in the acidity, the SCR activity decreased slightly. Weak redox capability lowered the low-temperature catalytic activity. Excellent SCR activity requires a balance of acidity and redox capability on the catalysts.


Asunto(s)
Contaminantes Atmosféricos/química , Amoníaco/química , Cerio/química , Óxido Nítrico/química , Sulfatos/química , Contaminación del Aire/prevención & control , Catálisis , Concentración de Iones de Hidrógeno , Oxidación-Reducción
15.
Environ Sci Technol ; 52(20): 11769-11777, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30207708

RESUMEN

CeO2-WO3-ZrO2 mixed oxides were prepared by the homogeneous precipitation method for the selective catalytic reduction of NOx with NH3 (NH3-SCR). The effects of hydrothermal aging on the catalytic performances of CeO2-WO3-ZrO2 were investigated. The results showed that CeO2-WO3-ZrO2 catalyst exhibited excellent NH3-SCR activity for removal of NOx and hydrothermal stability. After hydrothermal aging at 850 °C for 16 h, the optimum CeO2-WO3-ZrO2 catalyst could still realize 80% NOx conversion at 300-500 °C even under a high gas hourly space velocity of 250 000 h-1. The structural properties, redox ability, surface species, and acidity of fresh and hydrothermally aged CeO2-WO3-ZrO2 catalysts were characterized by N2-physisorption, XRD, Raman, H2-TPR, XPS, NH3-TPD, and in situ DRIFTS. The characterization results showed that decreases of 89% of the surface area and 71% of the NH3 storage capacity as well as new phase formation occurred for the CeO2-WO3-ZrO2 sample after hydrothermal aging at 850 °C for 16 h. The activity of hydrothermally aged CeO2-WO3-ZrO2 was mainly attributed to the retention of redox-acid sites and their interaction due to the formation of Ce-Zr solid solutions and Ce4W9O33.


Asunto(s)
Cerio , Óxidos , Amoníaco , Catálisis , Oxidación-Reducción
16.
Environ Sci Technol ; 48(17): 10354-62, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25105802

RESUMEN

The mechanism of N2O formation during the low-temperature selective catalytic reduction reaction (SCR) over Mn-Fe spinel was studied. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and transient reaction studies demonstrated that the Eley-Rideal mechanism (i.e., the reaction of adsorbed NH3 species with gaseous NO) and the Langmuir-Hinshelwood mechanism (i.e., the reaction of adsorbed NH3 species with adsorbed NOx species) both contributed to N2O formation. However, N2O selectivity of NO reduction over Mn-Fe spinel through the Langmuir-Hinshelwood mechanism was much less than that through the Eley-Rideal mechanism. The ratio of NO reduction over Mn-Fe spinel through the Langmuir-Hinshelwood mechanism remarkably increased; therefore, N2O selectivity of NO reduction over Mn-Fe spinel decreased with the decrease of the gas hourly space velocity (GHSV). As the gaseous NH3 concentration increased, N2O selectivity of NO reduction over Mn-Fe spinel increased because of the promotion of NO reduction through the Eley-Rideal mechanism. Meanwhile, N2O selectivity of NO reduction over Mn-Fe spinel decreased with the increase of the gaseous NO concentration because the formation of NH on Mn-Fe spinel was restrained. Therefore, N2O selectivity of NO reduction over Mn-Fe spinel was related to the GHSV and concentrations of reactants.


Asunto(s)
Óxido de Aluminio/química , Amoníaco/química , Frío , Hierro/química , Óxido de Magnesio/química , Manganeso/química , Óxido Nítrico/química , Óxido Nitroso/química , Adsorción , Catálisis , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier
17.
J Hazard Mater ; 476: 135023, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986406

RESUMEN

This study investigates the effects of varying Cu/Ce doping ratios on the NH3-SCR denitrification efficiency using Cu-HPW/CePO4 catalysts, where CePO4 serves as the support and copper-doped phosphotungstic acid (HPW) acts as the active phase. The NH3-SCR reaction mechanism was studied by In-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (In-situ DRIFTs) and Density Functional Theory (DFT). In-situ DRIFTs were employed to delve into the intricacies of adsorption and transformation dynamics at the surface sites of catalysts. This approach furnished a robust theoretical foundation aimed at augmenting the efficacy of low-temperature denitrification catalysts. DFT calculations were used to systematically investigate the reaction pathways, intermediates, transition states, and energy barriers over the HPW structure model to complete the NH3-SCR reaction. Empirical evidence suggests that modifying the catalysts with copper substantially enhances their denitrification efficacy and extends their operational temperature spectrum. A notable initial increase in denitrification efficiency was observed with increasing levels of copper modification, followed by a decline. Within the HPW-O15H site, the NH3-SCR reaction advances through both the E-R and L-H mechanisms, encompassing processes such as NH3 adsorption, intermediate formation and transformation, and product release.

18.
J Colloid Interface Sci ; 671: 712-724, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38823112

RESUMEN

Methane (CH4) is the second most consequential greenhouse gas after CO2, with a substantial global warming potential. The CH4 catalytic combustion offers an efficient method for the elimination of CH4. However, improving the catalytic performance of Pd-based materials for low-temperature CH4 combustion remains a big challenge. In this study, we synthesized an enhanced Pd/5NiAlOx catalyst that demonstrated superior catalytic activity and improved water resistance compared to the Pd/Al2O3 catalyst. Specifically, the T90 was decreased by over 100 °C under both dry and wet conditions. Introducing Ni resulted in an enormously enhanced number of oxygen defects on the obtained 5NiAlOx support. This defect-rich support facilitates the anchoring of PdO through increased electron transfer, thereby inhibiting the production of high-valence Pd(2+δ)+ and stimulating the generation of unsaturated Pd sites. Pd0 can effectively activate surface oxygen and PdO plays a significant role in activating CH4, resulting in high activity for Pd/5NiAlOx. On the other hand, the increased water resistance of Pd/5NiAlOx was mainly due to the generation of *OOH species and the lower accumulation of surface -OH species during the reaction process.

19.
Environ Sci Technol ; 47(7): 3293-8, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23477804

RESUMEN

Hydrothermal stability is one of the challenges for the practical application of Fe-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with NH3 (NH(3)-SCR) for diesel engines. The presence of NO(3) in the exhaust gases can enhance the deNOx activity because of the fast SCR reaction. In this work, a Fe-ZSM-5 catalyst was prepared by a solid-state ion-exchange method and was hydrothermally deactivated at 800 °C in the presence of 10% H(2)O. The activity of fresh and hydrothermal aged Fe-ZSM-5 catalysts was investigated in standard SCR (NO(2)/NOx = 0) and in fast SCR with NO(2)/NOx = 0.3 and 0.5. In standard SCR, hydrothermal aging of Fe-ZSM-5 resulted in a significant decrease of low-temperature activity and a slight increase in high-temperature activity. In fast SCR, NOx conversion over aged Fe-ZSM-5 was significantly increased but was still lower than that over fresh catalyst. Additionally, production of N(2)O in fast SCR was much more apparent over aged Fe-ZSM-5 than over fresh catalyst. We propose that, in fast SCR, the rate of key reactions related to NO is slower over aged Fe-ZSM-5 than over fresh catalyst, thus increasing the probabilities of side reactions involving the formation of N(2)O.


Asunto(s)
Amoníaco/química , Hierro/química , Temperatura , Agua/química , Zeolitas/química , Catálisis , Óxido Nítrico , Oxidación-Reducción , Espectrofotometría Ultravioleta , Difracción de Rayos X
20.
J Colloid Interface Sci ; 652(Pt A): 923-935, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37634365

RESUMEN

Ceria-based catalysts for the selective catalytic reduction of NOx with NH3 (NH3-SCR) are always subject to deactivation by sulfur poisoning. In this study, Fe-doped Ce-W mixed oxides, which were synthesized by the co-precipitation method, improved the SCR activity and SO2 durability at low temperatures of undoped Ce-W oxides. The improved low-temperature activity was mainly due to the enhancement of redox properties at low temperatures and more active oxygen species, together with the adsorption and activation of more abundant NOx species, facilitating the "fast SCR" reaction. In the presence of SO2, doping with Fe species effectively prevented sulfate deposition on the CeW catalyst, due to the interaction between Fe, Ce, and W species inducing electron transfer among different metal sites and altering the electron distribution. The competitive adsorption behavior between NO and SO2 was changed by Fe doping, in which the adsorption and oxidation of SO2 were restrained. Besides, the elevated NO oxidation accelerated the decomposition of ammonium bisulfate, causing the SCR reaction to not be greatly suppressed. Hence, Fe-doped Ce-W oxides catalysts showed excellent sulfur resistance. This study provides an in-depth understanding of efficient Ce-based catalysts for SO2-tolerance strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA