Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Chem Chem Phys ; 24(43): 26915-26925, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36317708

RESUMEN

Understanding the combustion chemistry of biofuel compounds is of great importance in the intelligent selection of next-generation alternative fuels. Ethylene glycol (C6H10O2) is a prototypical representative of potential biofuels. In this work, the thermal decompositions along with the dissociative ionization of ethylene glycol are studied by synchrotron VUV photoionization mass spectrometry. As a part of the dissociative ionization study, the appearance energies of seven fragments are measured. Using the theoretical calculation results, the possible formation channels of these fragments are proposed. In particular, the productions of CH3OH+ and CH3OH2+ are suggested to be from the isomerization/dissociation process, where double proton transfer processes are highlighted. Using a tunable VUV source, the high-temperature pyrolysis products of ethylene glycol are differentiated from the dissociative ionization products. Specifically, two isomeric products vinyl alcohol and acetaldehyde by H2O elimination are obtained. Formaldehyde and methanol from direct C-C bond cleavage are identified. The fragmentations of fragile radicals such as hydroxymethyl, methoxy and ethoxy are used to explain the missing products from the direct C-C and C-O bond dissociation reactions. There is no experimental evidence for the occurrence of the H and H2 elimination reactions which may have not been accessed under the present temperature conditions.


Asunto(s)
Glicol de Etileno , Sincrotrones , Rayos Ultravioleta , Espectrometría de Masas/métodos , Biocombustibles
2.
J Phys Chem A ; 126(43): 8021-8027, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36259764

RESUMEN

Calculations and experiments were conducted on ozonolysis of ethyl vinyl ether (EVE) and butyl vinyl ether to identify an unconventional diradical intermediate generated from the O-O bond cleavage of primary ozonide. The diradical can undergo a H atom shifting process that yields keto-hydroperoxide (KHP), the characteristic product that identifies the existence of a diradical intermediate. RRKM-ME calculation, based on the PES at the CCSD(T)/VTZ//M06-2X/6-311++G(2df,2p) level, disclosed branching ratios of ∼0.65% for KHP formation. Using synchrotron-generated vacuum-ultraviolet photoionization mass spectrometry measurements, the formation of KHPs (C4H8O4) in ozonolysis of EVE was confirmed by ion signals of C4H8O4+ (ionization of KHP) and C4H7O2+ (ion fragment from the loss of HO2 from KHP) by comparing their photoionization efficiency spectra with the calculated adiabatic ionization energies and appearance energies.

3.
Phys Chem Chem Phys ; 23(17): 10456-10467, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33890587

RESUMEN

2-Methyl-3-buten-2-ol (MBO232) is a biogenic volatile organic compound (BVOC), and has a large percentage of emission into the atmosphere. The vacuum ultraviolet (VUV) photochemistry of BVOCs is of great importance for atmospheric chemistry. Studies have been carried out on several BVOCs but have not extended to MBO232. In the present report, the photoionization and dissociation processes of MBO232 in the energy range of 8.0-15.0 eV have been studied by tunable VUV synchrotron radiation coupled with a time-of-flight mass spectrometer. By measuring the photoionization spectra, the adiabatic ionization energy (AIE) of MBO232 and the appearance energies (AEs) of the eight identified fragment ions (i.e., C4H7O+, C3H7O+, C5H9+, C3H6O+, CH3CO+, CH3O+, C4H5+, and C3H5+) were determined. High-level quantum chemistry calculations suggest that there are 3 direct channels and 5 indirect channels via transition states and intermediates accountable for these fragments. Among the reaction channels, the direct elimination of CH3 is the most dominant channel and produces the resonance-stabilized radical cation. Most interestingly, our results show that the CH3 selectively migrates towards the cation, which leads to the different indirect channels. The CH3 migration is a rare process in the dissociative photoionization of metal-free organic molecules. We explain the process by molecular orbital calculations and electron localization function analysis and explore the non-conventional dissociation channels via the CH3 roaming mechanism. We further perform kinetics analysis using RRKM theory for the channels of interest. The activation barrier, and rate constants are analyzed for the branching fractions of the products. These results provide important implications for the VUV photochemistry of BVOCs in the atmosphere.

4.
J Phys Chem A ; 123(10): 1929-1936, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30811197

RESUMEN

Criegee intermediates have raised much attention in atmospheric chemistry because of their significance in ozonolysis mechanism. The simplest Criegee intermediate, CH2OO, and its reactions with acrylic acid including cycloadditions and insertions as main entrance channels have been investigated at CCSD(T)/cc-pVTZ//M06-2X/6-31G(d,p) level. Temperature- and pressure-dependent kinetics were predicted by solving the time-dependent master equations based on Rice-Ramsperger-Kassel-Marcus theory using MESS program, with temperatures from 200 to 500 K and pressures from 0.001 to 1000 atm. Variational transition state theory (VTST) was used for barrierless pathways and conventional transition state theory (CTST) for pathways with distinct barriers. Results indicate that hydroperoxymethyl acrylate is the dominant product under atmospheric conditions. The combination of two reactants will reduce the volatility and makes a possible factor that induces formation of secondary organic aerosols, which suggests CH2OO's entangled role in ever-increasing air pollution.

5.
Phys Chem Chem Phys ; 18(19): 13554-63, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27141555

RESUMEN

Photoionization and dissociation of the 1-propanol dimer and subsequent fragmentations have been investigated by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry and theoretical calculations. Besides the protonated monomer cation (C3H7OH)·H(+) (m/z = 61) and Cα-Cß bond cleavage fragment CH2O·(C3H7OH)H(+) (m/z = 91), the measured mass spectrum at an incident photon energy of 13 eV suggests a new dissociation channel resulting in the formation of the (C3H7OH)·H(+)·(C2H5OH) (m/z = 107) fragment. The appearance energies of the fragments (C3H7OH)·H(+), CH2O·(C3H7OH)H(+) and (C3H7OH)·H(+)·(C2H5OH) are measured at 10.05 ± 0.05 eV, 9.48 ± 0.05 eV, and 12.8 ± 0.1 eV, respectively, by scanning photoionization efficiency (PIE) spectra. The 1-propanol ion fragments as a function of VUV photon energy were interpreted with the aid of theoretical calculations. In addition to O-H and Cα-Cß bond cleavage, a new dissociation channel related to Cß-Cγ bond cleavage opens. In this channel, molecular rearrangement (proton transfer and hydrogen transfer after surmounting an energy barrier) gives rise to the generated complex, which then dissociates to produce the mixed propanol/ethanol proton bound cation (C3H7OH)·H(+)·(C2H5OH). This new dissociation channel has not been reported in previous studies of ethanol and acetic acid dimers. The photoionization and dissociation processes of the 1-propanol dimer are described in the photon energy range of 9-15 eV.

6.
J Chem Phys ; 142(2): 024306, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25591352

RESUMEN

While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C2H5OH)⋅H(+) (m/z = 47) and the ß-carbon-carbon bond cleavage fragment CH2O⋅(C2H5OH)H(+) (m/z = 77), the measured mass spectra revealed that a new fragment (C2H5OH)⋅(CH3)(+) (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C2H5OH)⋅H(+) and CH2O⋅(C2H5OH)H(+) have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.


Asunto(s)
Dimerización , Etanol/química , Procesos Fotoquímicos , Sincrotrones , Rayos Ultravioleta , Modelos Moleculares , Conformación Molecular
7.
J Phys Chem A ; 118(34): 7096-103, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25080068

RESUMEN

In present report, we explored hyperconjugation effects on the site- and bond-selective dissociation processes of cationic ethanol conformers by the use of theoretical methods (including configuration optimizations, natural bond orbital (NBO) analysis, and density of states (DOS) calculations, etc.) and the tunable synchrotron vacuum ultraviolet (SVUV) photoionization mass spectrometry. The dissociative mechanism of ethanol cations, in which hyperconjugative interactions and charge-transfer processes were involved, was proposed. The results reveal Cα-H and C-C bonds are selectively weakened, which arise as a result of the hyperconjugative interactions σCα-H → p in the trans-conformer and σC-C → p in gauche-conformer after being ionized. As a result, the selective bond cleavages would occur and different fragments were observed.


Asunto(s)
Cationes/química , Etanol/química , Electrones , Espectrometría de Masas , Modelos Químicos
8.
Eur J Mass Spectrom (Chichester) ; 20(6): 419-28, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25905866

RESUMEN

We investigated the photoionization and dissociation photoionization of the ß-pinene molecular using time-of-flight mass spectrometry with a tunable vacuum ultraviolet source in the region from 8.00eV to 15.50eV. The experimental ionization energy (IE) value is 8.60eV using electron impact as the ionization source which is not in good agreement with theoretical value (8.41 eV) with a G3MP2 method. We obtained the accurate IE of ß-pinene (8.45 ± 0.03eV) derived from the efficiency spectrum which is in good agreement with the theoretical value (8.38eV) of the CBS-QB3 method. We elucidated the dissociation pathways of primary fragment ions from the ß-pinene cation on the basis of experimental observations in combination with theoretical calculations. Most of the dissociation pathways occur via a rearrangement reaction prior to dissociation. We also determined the structures of the transition states and intermediates for those isomerization processes.

9.
J Chem Phys ; 139(2): 024307, 2013 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-23862943

RESUMEN

Site-selective ionization of ethanol dimer and the subsequent fragmentation were studied by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. With photoionization efficiency spectra measurements and theoretical calculations, the detailed mechanisms of the ionization-dissociation processes of ethanol dimer under VUV irradiation were explored. In 9.49-10.89 eV photon energy range, it was found that the ejection of the highest occupied molecular orbital (HOMO) electron from hydrogen bond donor induces a rapid barrierless proton-transfer process followed by two competitive dissociation channels, generating (C2H5OH)[middle dot]H(+) and CH2O[middle dot](C2H5OH)H(+), respectively. The latter comes from a carbon-carbon bond cleavage in the donor. While the photon energy is 10.9-11.58 eV, the electron of HOMO-1 of the hydrogen bond acceptor, is removed. Besides the dissociation channel to produce C2H5OH and C2H5OH(+), a new channel to generate (C2H5OH)[middle dot]CH2OH(+) is opened, where the cleavage of the carbon-carbon bond occurs in the acceptor. When the photon energy increases to 11.58 eV, the electron from HOMO-2 is ejected.

10.
J Chem Phys ; 138(9): 094306, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23485293

RESUMEN

Dissociation of internal energy selected CF4(+) ions in an excitation energy range of 15.40-19.60 eV has been investigated using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. Only CF3(+) fragment ions are observed in coincident mass spectra, indicating all the X(2)T1, A(2)T2, and B(2)E ionic states of CF4(+) are fully dissociative. Both kinetic energy released distribution (KERD) and angular distribution in dissociation of CF4(+) ions have been derived from three-dimensional TPEPICO time-sliced images. A parallel distribution of CF3(+) fragments along the polarization vector of photon is observed for dissociation of CF4(+) ions in all the low-lying electronic states. With the aid of F-loss potential energy curves, dissociation mechanisms of CF4(+) ions in these electronic states have been proposed. CF4(+) ions in both X(2)T1 and A(2)T2 states directly dissociate to CF3(+) and F fragments along the repulsive C-F coordinate, while a two-step dissociation mechanism is suggested for B(2)E state: CF4(+)(B(2)E) ion first converts to the lower A(2)T2 state via internal conversion, then dissociates to CF3(+) and F fragments along the steep A(2)T2 potential energy surface. In addition, an adiabatic appearance potential of AP0(CF3(+)∕CF4) has also been established to be 14.71 ± 0.02 eV, which is very consistent with the recent calculated values.

11.
J Mass Spectrom ; 58(8): e4967, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37464983

RESUMEN

This study employed a vacuum ultraviolet synchrotron radiation source and reflectron time-of-flight mass spectrometry (TOF-MS) to investigate the photoionization and dissociation of styrene. By analyzing the photoionization mass spectrum and efficiency curve alongside G3B3 theoretical calculations, we determined the ionization energy of the molecular ion, appearance energy of fragment ions, and relevant dissociation pathways. The major ion peaks observed in the photoionization mass spectra of styrene correspond to C8 H8 + , C8 H7 + and C6 H6 + . The ionization energy of styrene is measured as 8.46 ± 0.03 eV, whereas the appearance energies of C8 H7 + and C6 H6 + are found to be 12.42 ± 0.03 and 12.22 ± 0.03 eV, respectively, in agreement with theoretical values. The main channel for the photodissociation of styrene molecular ions is the formation of benzene ions, whereas the dissociation channel that loses hydrogen atoms is the secondary channel. Based on the experimental results and empirical formulas, the required dissociation energies (Ed ) of C8 H7 + , C8 H6 + and C6 H6 + are calculated to be (3.96 ± 0.06), (4.00 ± 0.06) and (3.76 ± 0.06) eV, respectively. Combined with related thermochemical parameters, the standard enthalpies of formations of C8 H8 + , C8 H7 + , C8 H6 + and C6 H6 + are determined to be 964.2, 1346.3, 1350.2 and 1327.0 kJ/mol, respectively. Based on the theoretical study, the kinetic factors controlling the styrene dissociation reaction process are determined by using the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. This provides a reference for further research on the atmospheric photooxidation reaction mechanism of styrene in atmospheric and interstellar environments.

12.
Rapid Commun Mass Spectrom ; 26(2): 189-94, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22173807

RESUMEN

We report the combination of a vacuum ultraviolet photoionization mass spectrometer, operating on the basis of synchrotron radiation, with an environmental reaction smog chamber for the first time. The gas- and pseudo-particle-phase products of OH-initiated isoprene photooxidation reactions were measured on-line and off-line, respectively, by mass spectrometry. It was observed that aldehydes, methacrolein, methyl vinyl ketone, methelglyoxal, formic acid, and similar compounds are the predominant gas-phase photooxidation products, whereas some multifunctional carbonyls and acids mainly exist in the particle phase. This finding is reasonably consistent with results of studies conducted in other laboratories using different methods. The results indicate that synchrotron radiation photoionization mass spectrometry coupled with a smog chamber is a potentially powerful tool for the study of the mechanism of atmospheric oxidations and the formation of secondary organic aerosols.

13.
J Chem Phys ; 137(12): 124308, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23020332

RESUMEN

In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH(3)COOH)(n)·H(+), the feature related to the fragment ions (CH(3)COOH)H(+)·COO (105 amu) via ß-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH(3)COOH)·H(+) and (CH(3)COOH)H(+)·COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH(3)COOH)H(+)·COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH(3)COOH)(+) becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH(3)COOH)·CH(3)CO(+). Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.


Asunto(s)
Ácido Acético/química , Teoría Cuántica , Sincrotrones , Rayos Ultravioleta , Dimerización , Electrones , Cinética , Espectrometría de Masas , Estructura Molecular , Procesos Fotoquímicos , Termodinámica
14.
J Chem Phys ; 136(3): 034304, 2012 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-22280757

RESUMEN

Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH(3)Cl(+) ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH(3)(+) dissociated from CH(3)Cl(+)(A(2)A(1) and B(2)E) ions were recorded. CH(3)(+) was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH(2)Cl(+) fragment was very low. For dissociation of CH(3)Cl(+)(A(2)A(1)) ions, a series of homocentric rings was clearly observed in the CH(3)(+) image, which was assigned as the excitation of umbrella vibration of CH(3)(+) ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH(3)(+)(1(1)A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH(3)Cl(+)(B(2)E) ions, total kinetic energy released distribution for CH(3)(+) fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B(2)E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH(3)Cl(+), CH(3)(+) formation from CH(3)Cl(+)(A(2)A(1)) ions was a rapid direct fragmentation, while CH(3)Cl(+)(B(2)E) ions statistically dissociated to CH(3)(+) + Cl via internal conversion to the high vibrational states of X(2)E.


Asunto(s)
Cloruro de Metilo/química , Cinética , Espectrometría de Masas , Procesos Fotoquímicos , Espectroscopía de Fotoelectrones , Vibración
15.
J Environ Sci (China) ; 24(12): 2075-82, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23534203

RESUMEN

The gas-phase organic compounds resulting from OH-initiated photooxidation of isoprene have been investigated on-line by VUV photoionization mass spectrometry based on synchrotron radiation for the first time. The photoionization efficiency curves of the corresponding gaseous products as well as the chosen standards have been deduced by gating the interested peaks in the photoionization mass spectra while scanning the photon energy simultaneously, which permits the identification of the pivotal gaseous products of the photooxidation of isoprene, such as formaldehyde (10.84 eV), formic acid (11.38 eV), acetone (9.68 eV), glyoxal (9.84 eV), acetic acid (10.75 eV), methacrolein (9.91 eV), and methyl vinyl ketone (9.66 eV). Proposed reaction mechanisms leading to the formation of these key products were discussed, which were completely consistent with the previous works of different groups. The capability of synchrotron radiation photoionization mass spectrometry to directly identify the chemical composition of the gaseous products in a simulation chamber has been demonstrated, and its potential application in related studies of atmospheric oxidation of ambient volatile organic compounds is anticipated.


Asunto(s)
Butadienos/química , Hemiterpenos/química , Pentanos/química , Butadienos/efectos de la radiación , Hemiterpenos/efectos de la radiación , Espectrometría de Masas , Oxidación-Reducción , Pentanos/efectos de la radiación , Sincrotrones
16.
Anal Chem ; 83(23): 9024-32, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22011279

RESUMEN

This paper describes thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for the real-time analysis of secondary organic aerosols (SOAs) in smog chamber experiments. SOAs are sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. Once the particles have entered the source region, they impact on a heater and are vaporized. The nascent vapor is then softly ionized by tunable VUV synchrotron radiation. TD-VUV-TOF-PIAMS was used in conjunction with the smog chamber to study SOA formation from the photooxidation of toluene with hydroxyl radicals. The ionization energies (IEs) of these SOA products are sometimes very different with each other. As the ideal photon source is tunable, its energy can be adjusted for each molecular to be ionized. The mass spectra obtained at different photon energies are then to be useful for molecular identification. Real-time analysis of the mass spectra of SOAs is compared with previous off-line measurements. These results illustrate the potential of TD-VUV-TOF-PIAMS for direct molecular characterization of SOAs in smog chamber experiments.

17.
J Phys Chem A ; 115(17): 4248-54, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21456568

RESUMEN

Negative ions Cl(-), Cl(2)(-), CCl(-), CHCl(-), and CCl(2)(-) are observed in vacuum-ultraviolet ion-pair photodissociations of chloroform (CCl(3)H) using the Hefei synchrotron radiation facility, and their ion production efficiency curves are recorded in the photon energy range of 10.00-21.50 eV. Two similar spectra of the isotope anions (35)Cl(-) and (37)Cl(-) indicate the following: Besides the strong bands corresponding to the electron transitions from valence to Rydberg orbitals converging to the ionic states, some additional peaks can be assigned with the energetically accessible multibody fragmentations; a distinct peak at photon energy 14.55 eV may be due to a cascade process (namely, the Cl(2) neutral fragment at the highly excited state D'2(3)Π(g) may be produced in the photodissociation of CCl(3)H, and then the Cl(-) anions are produced in the pulsed-field induced ion-pair dissociations of Cl(2) (D'2(3)Π(g))); two vibrational excitation progressions, nν(2)(+) and nν(2)(+) + ν(3)(+), and nν(4)(+) and nν(4)(+) + ν(2)(+), are observed around C̃ (2)E and D̃ (2)E ionic states, respectively. The enthalpies of the multibody fragmentations to Cl(2)(-), CCl(-), CHCl(-), and CCl(2)(-) are calculated with the thermochemistry data available in the literature, and these multibody ion-pair dissociation pathways are tentatively assigned in the respective anion production spectra.


Asunto(s)
Cloroformo/química , Fotones , Rayos Ultravioleta , Análisis Espectral , Vacio
18.
J Chem Phys ; 134(5): 054312, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21303125

RESUMEN

Using the novel threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging technique, the dissociative photoionization of N(2)O molecule via the C(2)Σ(+) ionic state has been investigated. Four fragment ions, NO(+), N(2)(+), O(+), and N(+), are observed, respectively, and the NO(+) and N(+) ions are always dominant in the whole excitation energy range of the C(2)Σ(+) ionic state. Subsequently, the TPEPICO three-dimensional time-sliced velocity images of NO(+) dissociated from the vibrational state-selected N(2)O(+)(C(2)Σ(+)) ions have been recorded. Thus the kinetic and internal energy distributions of the NO(+) fragments have been obtained directly as the bimodal distributions, suggesting that the NO(+) fragments are formed via both NO(+)(X(1)Σ(+)) + N((2)P) and NO(+)(X(1)Σ(+)) + N((2)D) dissociation channels. Almost the same vibrational population reversions are identified for both dissociation pathways. Interestingly, the obtained branching ratios of the two channels exhibit some dependence on the excited vibrational mode for N(2)O(+)(C(2)Σ(+)), in which the excited asymmetrical stretching potentially promotes dissociation possibility along the NO(+)(X(1)Σ(+)) + N((2)D) pathway. In addition, the measured anisotropic parameters of NO(+) are close to 0.5, indicating that the C(2)Σ(+) state of N(2)O(+) is fully predissociative, indeed, with a tendency of parallel dissociation, and therefore, the corresponding predissociation mechanisms for the N(2)O(+)(C(2)Σ(+)) ions are depicted.

19.
J Chem Phys ; 134(17): 174306, 2011 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-21548686

RESUMEN

The vacuum-ultraviolet photoionization and dissociative photoionization of 1,3-butadiene in a region ∼8.5-17 eV have been investigated with time-of-flight photoionization mass spectrometry using tunable synchrotron radiation. The adiabatic ionization energy of 1,3-butadiene and appearance energies for its fragment ions, C(4)H(5)(+), C(4)H(4)(+), C(4)H(3)(+), C(3)H(3)(+), C(2)H(4)(+), C(2)H(3)(+), and C(2)H(2)(+), are determined to be 9.09, 11.72, 13.11, 15.20, 11.50, 12.44, 15.15, and 15.14 eV, respectively, by measurements of photoionization efficiency spectra. Ab initio molecular orbital calculations have been performed to investigate the reaction mechanism of dissociative photoionization of 1,3-butadiene. On the basis of experimental and theoretical results, seven dissociative photoionization channels are proposed: C(4)H(5)(+) + H, C(4)H(4)(+) + H(2), C(4)H(3)(+) + H(2) + H, C(3)H(3)(+) + CH(3), C(2)H(4)(+) + C(2)H(2), C(2)H(3)(+) + C(2)H(2) + H, and C(2)H(2)(+) + C(2)H(2) + H(2). Channel C(3)H(3)(+) + CH(3) is found to be the dominant one, followed by C(4)H(5)(+) + H and C(2)H(4)(+) + C(2)H(2). The majority of these channels occur via isomerization prior to dissociation. Transition structures and intermediates for those isomerization processes were also determined.

20.
Eur J Mass Spectrom (Chichester) ; 17(2): 101-12, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21719920

RESUMEN

The photoionization and photodissociation of L-valine are studied by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry at the photon energy of 13 eV. The ionization energy of L-valine and the appearance energies of major fragments are measured by the photoionization efficiency spectrum in the photon energy range of 8-11 eV. Possible formation pathways of the major fragments, NH(2)CHC(OH)(2)(+) (m/z=75), NH(2)(CH(3))(2)(CH)(2)(+) (m/z=72) and NH(2)CHCO(+) (m/z=57), are discussed in detail with the theoretical calculations at the B3LYP/6-31++G (d, p) level. Hydrogen migration is considered as the key way for the formation of NH(2)CHC(OH)(2)(+) (m/z=75) and NH(2)CHCO(+) (m/z=57). Furthermore, other fragments, NH(2)CHCOOH(+) (m/z=74), (CH(3))(2)(CH)(2)(+) (m/z=56), C(4)H(7)(+) (m/z=55), NH(2)CHOH(+) (m/z=46), NH(2)CH(2)(+) (m/z=30) and m/z=18, species are also briefly described.


Asunto(s)
Espectrometría de Masas/métodos , Valina/química , Modelos Moleculares , Conformación Molecular , Procesos Fotoquímicos , Estereoisomerismo , Sincrotrones , Rayos Ultravioleta , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA