Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839912

RESUMEN

The previously demonstrated activity of aqueous solutions of methionine and zinc salts against biofilms of uropathogenic bacteria prompted us to investigate the structure and properties of zinc methionine complex obtained from such solutions. The paper presents the analysis results of zinc coordination complexes with methionine obtained by synthesis (0.034 mol of L-methionine, 0.034 mol of NaOH, 40 mL of H2O, 0.017 mol ZnSO4, 60 °C) and simple crystallization from water solution (25 mL of a solution containing 134 mmol/L L-methionine, 67 mmol/L ZnSO4, pH = 5.74, I = 0.37 mmol/L, crystallization at room temperature during more than two weeks). IR spectral analysis and X-ray diffraction showed the structural similarity of the substances to each other, in agreement with the data described in the literature. DSC confirmed the formation of a thermally stable (in the range from -30 °C to 180 °C) chelate compound in both cases and indicated the possible retention of the polymorphic two-dimensional structure inherent in L-methionine with the temperature of phase transition 320 K. The crystallized complex had better solubility in water (100 to 1000 mL per 1.0 g) contra the synthesized analog, which was practically insoluble (more than 10 000 mL per 1.0 g). The results of the solubility assessment, supplemented by the results of the dispersion analysis of solutions by the dynamic light scattering method indicated the formation of zinc-containing nanoparticles (80 nm) in a saturated water solution of a crystallized substance, suggesting the crystallized substance may have higher bioavailability. We predicted a possibility of the equivalent existence of optically active cis and trans isomers in methionine-zinc solutions by the close values of formation enthalpy (-655 kJ/mol and -657 kJ/mol for cis and trans forms, respectively) and also illustrated by the polarimetry measurement results (∆α = 0.4°, pH = 5.74, C(Met) = 134 mmol/L; the concentration of metal ion gradually increased from 0 to 134 mmol/L). The obtained results allowed us to conclude that the compound isolated from the solution is a zinc-methionine chelate with the presence of sulfate groups and underline the role of the synthesis route for the biopharmaceutical characteristics of the resulting substance. We provided some quality indicators that it may be possible to include in the pharmacopeia monographs.

2.
Polymers (Basel) ; 13(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670430

RESUMEN

This study focuses on the preparation of carbon fiber precursors from solutions of cellulose in N-methylmorpholine-N-oxide with the addition of bis(trimethylsilyl)acetylene, studying their structural features and evaluating thermal behavior. The introduction of a silicon-containing additive into cellulose leads to an increase in the carbon yield during carbonization of composite precursors. The type of the observed peaks on the differential scanning calorimetry (DSC) curves cardinally changes from endo peaks intrinsic for cellulose fibers to the combination of endo and exo peaks for composite fibers. For the first time, coefficient of thermal expansion (CTE) values were obtained for Lyocell fibers and composite fibers with bis(trimethylsilyl)acetylene (BTMSA). The study of the dependence of linear dimensions of the heat treatment fibers on temperature made it possible to determine the relation between thermal expansion coefficients of carbonized fibers and thermogravimetric curves, as well as to reveal the relationship between fiber shrinkage and BTMSA bis(trimethylsilyl)acetylene content. Carbon fibers from composite precursors are obtained at a processing temperature of 1200 °C. A study of the structure of carbon fibers by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy made it possible to determine the amorphous structure of the fibers obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA