Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Genomics ; 52(7): 293-303, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32567507

RESUMEN

Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy's effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy.


Asunto(s)
Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Silenciador del Gen , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Fenotipo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Cardiomiopatía Hipertrófica/patología , Diferenciación Celular/genética , Células Cultivadas , Niño , Preescolar , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Persona de Mediana Edad , Oligonucleótidos Antisentido/genética , Linaje , ARN Interferente Pequeño/genética , Hermanos , Adulto Joven
2.
Circulation ; 140(9): 765-778, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31315475

RESUMEN

BACKGROUND: Restrictive cardiomyopathy is a rare heart disease associated with mutations in sarcomeric genes and with phenotypic overlap with hypertrophic cardiomyopathy. There is no approved therapy directed at the underlying cause. Here, we explore the potential of an interfering RNA (RNAi) therapeutic for a human sarcomeric mutation in MYL2 causative of restrictive cardiomyopathy in a mouse model. METHODS: A short hairpin RNA (M7.8L) was selected from a pool for specificity and efficacy. Two groups of myosin regulatory light chain N47K transgenic mice were injected with M7.8L packaged in adeno-associated virus 9 at 3 days of age and 60 days of age. Mice were subjected to treadmill exercise and echocardiography after treatment to determine maximal oxygen uptake and left ventricular mass. At the end of treatment, heart, lung, liver, and kidney tissue was harvested to determine viral tropism and for transcriptomic and proteomic analysis. Cardiomyocytes were isolated for single-cell studies. RESULTS: A one-time injection of AAV9-M7.8L RNAi in 3-day-old humanized regulatory light chain mutant transgenic mice silenced the mutated allele (RLC-47K) with minimal effects on the normal allele (RLC-47N) assayed at 16 weeks postinjection. AAV9-M7.8L RNAi suppressed the expression of hypertrophic biomarkers, reduced heart weight, and attenuated a pathological increase in left ventricular mass. Single adult cardiac myocytes from mice treated with AAV9-M7.8L showed partial restoration of contraction, relaxation, and calcium kinetics. In addition, cardiac stress protein biomarkers, such as calmodulin-dependent protein kinase II and the transcription activator Brg1 were reduced, suggesting recovery toward a healthy myocardium. Transcriptome analyses further revealed no significant changes of argonaute (AGO1, AGO2) and endoribonuclease dicer (DICER1) transcripts, and endogenous microRNAs were preserved, suggesting that the RNAi pathway was not saturated. CONCLUSIONS: Our results show the feasibility, efficacy, and safety of RNAi therapeutics directed towards human restrictive cardiomyopathy. This is a promising step toward targeted therapy for a prevalent human disease.


Asunto(s)
Cardiomiopatía Restrictiva/patología , Cadenas Ligeras de Miosina/metabolismo , Interferencia de ARN , Alelos , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatía Restrictiva/prevención & control , ADN Helicasas/genética , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Vectores Genéticos/metabolismo , Humanos , Ratones , Ratones Transgénicos , Contracción Muscular , Mutagénesis Sitio-Dirigida , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/antagonistas & inhibidores , Cadenas Ligeras de Miosina/genética , ARN Interferente Pequeño/metabolismo
3.
Nature ; 514(7520): 102-106, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25119045

RESUMEN

The role of long noncoding RNA (lncRNA) in adult hearts is unknown; also unclear is how lncRNA modulates nucleosome remodelling. An estimated 70% of mouse genes undergo antisense transcription, including myosin heavy chain 7 (Myh7), which encodes molecular motor proteins for heart contraction. Here we identify a cluster of lncRNA transcripts from Myh7 loci and demonstrate a new lncRNA-chromatin mechanism for heart failure. In mice, these transcripts, which we named myosin heavy-chain-associated RNA transcripts (Myheart, or Mhrt), are cardiac-specific and abundant in adult hearts. Pathological stress activates the Brg1-Hdac-Parp chromatin repressor complex to inhibit Mhrt transcription in the heart. Such stress-induced Mhrt repression is essential for cardiomyopathy to develop: restoring Mhrt to the pre-stress level protects the heart from hypertrophy and failure. Mhrt antagonizes the function of Brg1, a chromatin-remodelling factor that is activated by stress to trigger aberrant gene expression and cardiac myopathy. Mhrt prevents Brg1 from recognizing its genomic DNA targets, thus inhibiting chromatin targeting and gene regulation by Brg1. It does so by binding to the helicase domain of Brg1, a domain that is crucial for tethering Brg1 to chromatinized DNA targets. Brg1 helicase has dual nucleic-acid-binding specificities: it is capable of binding lncRNA (Mhrt) and chromatinized--but not naked--DNA. This dual-binding feature of helicase enables a competitive inhibition mechanism by which Mhrt sequesters Brg1 from its genomic DNA targets to prevent chromatin remodelling. A Mhrt-Brg1 feedback circuit is thus crucial for heart function. Human MHRT also originates from MYH7 loci and is repressed in various types of myopathic hearts, suggesting a conserved lncRNA mechanism in human cardiomyopathy. Our studies identify a cardioprotective lncRNA, define a new targeting mechanism for ATP-dependent chromatin-remodelling factors, and establish a new paradigm for lncRNA-chromatin interaction.


Asunto(s)
Cardiomegalia/genética , Cardiomegalia/patología , Cadenas Pesadas de Miosina/genética , ARN Largo no Codificante/genética , Animales , Miosinas Cardíacas/genética , Cardiomegalia/prevención & control , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/prevención & control , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Retroalimentación Fisiológica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Histona Desacetilasas/metabolismo , Humanos , Ratones , Miocardio/metabolismo , Miocardio/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(38): E5628-35, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601681

RESUMEN

Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy.


Asunto(s)
Cardiomegalia/metabolismo , ADN Helicasas/genética , Proteína Forkhead Box M1/genética , Insuficiencia Cardíaca/genética , Proteínas Nucleares/genética , Peptidil-Dipeptidasa A/genética , Factores de Transcripción/genética , Angiotensina II/biosíntesis , Angiotensina II/genética , Enzima Convertidora de Angiotensina 2 , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Cardiomegalia/patología , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteína Forkhead Box M1/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Miocardio/metabolismo , Miocardio/patología , Proteínas Nucleares/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Tioestreptona/administración & dosificación , Factores de Transcripción/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 315(2): H348-H356, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29775410

RESUMEN

The G protein-coupled receptor APJ is a promising therapeutic target for heart failure. Constitutive deletion of APJ in the mouse is protective against the hypertrophy-heart failure transition via elimination of ligand-independent, ß-arrestin-dependent stretch transduction. However, the cellular origin of this stretch transduction and the details of its interaction with apelin signaling remain unknown. We generated mice with conditional elimination of APJ in the endothelium (APJendo-/-) and myocardium (APJmyo-/-). No baseline difference was observed in left ventricular function in APJendo-/-, APJmyo-/-, or control (APJendo+/+, APJmyo+/+) mice. After exposure to transaortic constriction, APJendo-/- mice displayed decreased left ventricular systolic function and increased wall thickness, whereas APJmyo-/- mice were protected. At the cellular level, carbon fiber stretch of freshly isolated single cardiomyocytes demonstrated decreased contractile responses to stretch in APJ-/- cardiomyocytes compared with APJ+/+ cardiomyocytes. Ca2+ transients did not change with stretch in either APJ-/- or APJ+/+ cardiomyocytes. Application of apelin to APJ+/+ cardiomyocytes resulted in decreased Ca2+ transients. Furthermore, hearts of mice treated with apelin exhibited decreased phosphorylation in cardiac troponin I NH2-terminal residues (Ser22 and Ser23) consistent with increased Ca2+ sensitivity. These data establish that APJ stretch transduction is mediated specifically by myocardial APJ, that APJ is necessary for stretch-induced increases in contractility, and that apelin opposes APJ's stretch-mediated hypertrophy signaling by lowering Ca2+ transients while maintaining contractility through myofilament Ca2+ sensitization. These findings underscore apelin's unique potential as a therapeutic agent that can simultaneously support cardiac function and protect against the hypertrophy-heart failure transition. NEW & NOTEWORTHY These data address fundamental gaps in our understanding of apelin-APJ signaling in heart failure by localizing APJ's ligand-independent stretch sensing to the myocardium, identifying a novel mechanism of apelin-APJ inotropy via myofilament Ca2+ sensitization, and identifying potential mitigating effects of apelin in APJ stretch-induced hypertrophic signaling.


Asunto(s)
Receptores de Apelina/metabolismo , Apelina/farmacología , Insuficiencia Cardíaca/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Animales , Receptores de Apelina/genética , Señalización del Calcio , Células Cultivadas , Insuficiencia Cardíaca/etiología , Hipertrofia Ventricular Izquierda/complicaciones , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Troponina I/metabolismo
6.
Biochim Biophys Acta ; 1863(7 Pt B): 1772-81, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26952936

RESUMEN

Chromatin structure is determined by nucleosome positioning, histone modifications, and DNA methylation. How chromatin modifications are coordinately altered under pathological conditions remains elusive. Here we describe a stress-activated mechanism of concerted chromatin modification in the heart. In mice, pathological stress activates cardiomyocytes to express Brg1 (nucleosome-remodeling factor), G9a/Glp (histone methyltransferase), and Dnmt3 (DNA methyltransferase). Once activated, Brg1 recruits G9a and then Dnmt3 to sequentially assemble repressive chromatin-marked by H3K9 and CpG methylation-on a key molecular motor gene (Myh6), thereby silencing Myh6 and impairing cardiac contraction. Disruption of Brg1, G9a or Dnmt3 erases repressive chromatin marks and de-represses Myh6, reducing stress-induced cardiac dysfunction. In human hypertrophic hearts, BRG1-G9a/GLP-DNMT3 complex is also activated; its level correlates with H3K9/CpG methylation, Myh6 repression, and cardiomyopathy. Our studies demonstrate a new mechanism of chromatin assembly in stressed hearts and novel therapeutic targets for restoring Myh6 and ventricular function. The stress-induced Brg1-G9a-Dnmt3 interactions and sequence of repressive chromatin assembly on Myh6 illustrates a molecular mechanism by which the heart epigenetically responds to environmental signals. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Asunto(s)
Cardiomegalia/enzimología , Cardiomiopatías/enzimología , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Helicasas/metabolismo , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Miocardio/enzimología , Cadenas Pesadas de Miosina/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Estrés Fisiológico , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Cromatina/genética , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Helicasas/deficiencia , ADN Helicasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Modelos Animales de Enfermedad , Edad Gestacional , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Metilación , Ratones Noqueados , Miocardio/patología , Cadenas Pesadas de Miosina/genética , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Recuperación de la Función , Transducción de Señal , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Función Ventricular Izquierda
7.
Circulation ; 134(13): 961-977, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27582424

RESUMEN

BACKGROUND: Survival after sudden cardiac arrest is limited by postarrest myocardial dysfunction, but understanding of this phenomenon is constrained by a lack of data from a physiological model of disease. In this study, we established an in vivo model of cardiac arrest and resuscitation, characterized the biology of the associated myocardial dysfunction, and tested novel therapeutic strategies. METHODS: We developed rodent models of in vivo postarrest myocardial dysfunction using extracorporeal membrane oxygenation resuscitation followed by invasive hemodynamics measurement. In postarrest isolated cardiomyocytes, we assessed mechanical load and Ca(2) (+)-induced Ca(2+) release (CICR) simultaneously using the microcarbon fiber technique and observed reduced function and myofilament calcium sensitivity. We used a novel fiberoptic catheter imaging system and a genetically encoded calcium sensor, GCaMP6f, to image CICR in vivo. RESULTS: We found potentiation of CICR in isolated cells from this extracorporeal membrane oxygenation model and in cells isolated from an ischemia/reperfusion Langendorff model perfused with oxygenated blood from an arrested animal but not when reperfused in saline. We established that CICR potentiation begins in vivo. The augmented CICR observed after arrest was mediated by the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Increased phosphorylation of CaMKII, phospholamban, and ryanodine receptor 2 was detected in the postarrest period. Exogenous adrenergic activation in vivo recapitulated Ca(2+) potentiation but was associated with lesser CaMKII activation. Because oxidative stress and aldehydic adduct formation were high after arrest, we tested a small-molecule activator of aldehyde dehydrogenase type 2, Alda-1, which reduced oxidative stress, restored calcium and CaMKII homeostasis, and improved cardiac function and postarrest outcome in vivo. CONCLUSIONS: Cardiac arrest and reperfusion lead to CaMKII activation and calcium long-term potentiation, which support cardiomyocyte contractility in the face of impaired postarrest myofilament calcium sensitivity. Alda-1 mitigates these effects, normalizes calcium cycling, and improves outcome.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Benzamidas/farmacología , Benzodioxoles/farmacología , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Paro Cardíaco/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Animales , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/metabolismo , Potenciación a Largo Plazo/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
8.
Nature ; 466(7302): 62-7, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596014

RESUMEN

Cardiac hypertrophy and failure are characterized by transcriptional reprogramming of gene expression. Adult cardiomyocytes in mice primarily express alpha-myosin heavy chain (alpha-MHC, also known as Myh6), whereas embryonic cardiomyocytes express beta-MHC (also known as Myh7). Cardiac stress triggers adult hearts to undergo hypertrophy and a shift from alpha-MHC to fetal beta-MHC expression. Here we show that Brg1, a chromatin-remodelling protein, has a critical role in regulating cardiac growth, differentiation and gene expression. In embryos, Brg1 promotes myocyte proliferation by maintaining Bmp10 and suppressing p57(kip2) expression. It preserves fetal cardiac differentiation by interacting with histone deacetylase (HDAC) and poly (ADP ribose) polymerase (PARP) to repress alpha-MHC and activate beta-MHC. In adults, Brg1 (also known as Smarca4) is turned off in cardiomyocytes. It is reactivated by cardiac stresses and forms a complex with its embryonic partners, HDAC and PARP, to induce a pathological alpha-MHC to beta-MHC shift. Preventing Brg1 re-expression decreases hypertrophy and reverses this MHC switch. BRG1 is activated in certain patients with hypertrophic cardiomyopathy, its level correlating with disease severity and MHC changes. Our studies show that Brg1 maintains cardiomyocytes in an embryonic state, and demonstrate an epigenetic mechanism by which three classes of chromatin-modifying factors-Brg1, HDAC and PARP-cooperate to control developmental and pathological gene expression.


Asunto(s)
Cardiomegalia/genética , Cardiomegalia/metabolismo , Cromatina/genética , ADN Helicasas/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Cardiomegalia/patología , Diferenciación Celular , Proliferación Celular , ADN Helicasas/deficiencia , ADN Helicasas/genética , Pérdida del Embrión/genética , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Humanos , Ratones , Miocardio/citología , Miocardio/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
9.
Proc Natl Acad Sci U S A ; 110(5): 1738-43, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319608

RESUMEN

Development of the cerebral vessels, pharyngeal arch arteries (PAAs). and cardiac outflow tract (OFT) requires multipotent neural crest cells (NCCs) that migrate from the neural tube to target tissue destinations. Little is known about how mammalian NCC development is orchestrated by gene programming at the chromatin level, however. Here we show that Brahma-related gene 1 (Brg1), an ATPase subunit of the Brg1/Brahma-associated factor (BAF) chromatin-remodeling complex, is required in NCCs to direct cardiovascular development. Mouse embryos lacking Brg1 in NCCs display immature cerebral vessels, aberrant PAA patterning, and shortened OFT. Brg1 suppresses an apoptosis factor, Apoptosis signal-regulating kinase 1 (Ask1), and a cell cycle inhibitor, p21(cip1), to inhibit apoptosis and promote proliferation of NCCs, thereby maintaining a multipotent cell reservoir at the neural crest. Brg1 also supports Myosin heavy chain 11 (Myh11) expression to allow NCCs to develop into mature vascular smooth muscle cells of cerebral vessels. Within NCCs, Brg1 partners with chromatin remodeler Chromodomain-helicase-DNA-binding protein 7 (Chd7) on the PlexinA2 promoter to activate PlexinA2, which encodes a receptor for semaphorin to guide NCCs into the OFT. Our findings reveal an important role for Brg1 and its downstream pathways in the survival, differentiation, and migration of the multipotent NCCs critical for mammalian cardiovascular development.


Asunto(s)
ADN Helicasas/genética , Células Madre Multipotentes/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Nucleares/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Animales , Apoptosis/genética , Sistema Cardiovascular/citología , Sistema Cardiovascular/embriología , Sistema Cardiovascular/metabolismo , Movimiento Celular/genética , Proliferación Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Microscopía Fluorescente , Mutación , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas Nucleares/metabolismo , Embarazo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
10.
Genesis ; 52(5): 399-407, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24591256

RESUMEN

Insufficiency of surfactants is a core factor in respiratory distress syndrome, which causes apnea and neonatal death, particularly in preterm infants. Surfactant proteins are secreted by alveolar type II cells in the lung epithelium, the differentiation of which is regulated by Fgf10 elaborated by the adjacent mesenchyme. However, the molecular regulation of mesenchymal Fgf10 during lung development has not been fully understood. Here, we show that Pbx1, a homeodomain transcription factor, is required in the lung mesenchyme for the expression of Fgf10. Mouse embryos lacking Pbx1 in the lung mesenchyme show compact terminal saccules and perinatal lethality with failure of postnatal alveolar expansion. Mutant embryos had severely reduced expression of Fgf10 and surfactant genes (Spa, Spb, Spc, and Spd) that are essential for alveolar expansion for gas exchange at birth. Molecularly, Pbx1 directly binds to the Fgf10 promoter and cooperates with Meis and Hox proteins to transcriptionally activate Fgf10. Our results thus show how Pbx1 controls Fgf10 in the developing lung.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Pulmón/crecimiento & desarrollo , Mesodermo/metabolismo , Factores de Transcripción/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Pulmón/metabolismo , Mesodermo/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Embarazo , Regiones Promotoras Genéticas , Factores de Transcripción/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-38060356

RESUMEN

A Fourier-based fast 3-D ultrasound imaging method using row-column-addressed (RCA) 2-D arrays is presented. The row elements in an RCA array are activated sequentially, and all the column elements are used to receive. The obtained dataset is adapted to approximate to that obtained using a fully sampled array after a plane wave at a given incident angle is transmitted. In this way, the fast algorithm in plane-wave Fourier imaging (PWFI) can be applied to the adapted dataset. In addition, synthesizing multiple datasets based on multiple incident angles enables angular compounding, which improves the image quality. The proposed method was validated using computer simulations and physical-phantom experiments. The results show that the spatial resolution and contrast of the proposed method are comparable with those of its PWFI counterpart without requiring a fully sampled (FS) array. Compared with the delay-and-sum (DAS) method using the RCA array, the proposed method provides comparable spatial resolution but lower contrast; however, the computational complexity is significantly reduced from O(N4Nz) to O(WN2Nz log2(N2Nz)) , where N is the number of elements on each side of the RCA array, Nz is the number of voxels in the axial direction in the output image, and W is the number of compounding angles. For example, in the simulated results when the maximum compounding angle M is 5°, at a given point the lateral - 6-dB width provided by the proposed method is 0.241 mm (0.267 mm for DAS), the contrast ratio of a hyperechoic cyst is 8.87 dB (9.10 dB for DAS), the number of real number operations is reduced by a factor of 20.62, and the number of memory accesses is reduced by a factor of 47.21, both compared with DAS. This novel fast algorithm could facilitate the development of compact real-time 3-D imaging systems, especially when the channel count is high and a large field of view (FOV) is required.

12.
Dev Cell ; 14(2): 298-311, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18267097

RESUMEN

Developing myocardial cells respond to signals from the endocardial layer to form a network of trabeculae that characterize the ventricles of the vertebrate heart. Abnormal myocardial trabeculation results in specific cardiomyopathies in humans and yet trabecular development is poorly understood. We show that trabeculation requires Brg1, a chromatin remodeling protein, to repress ADAMTS1 expression in the endocardium that overlies the developing trabeculae. Repression of ADAMTS1, a secreted matrix metalloproteinase, allows the establishment of an extracellular environment in the cardiac jelly that supports trabecular growth. Later during embryogenesis, ADAMTS1 expression initiates in the endocardium to degrade the cardiac jelly and prevent excessive trabeculation. Thus, the composition of cardiac jelly essential for myocardial morphogenesis is dynamically controlled by ADAMTS1 and its chromatin-based transcriptional regulation. Modification of the intervening microenvironment provides a mechanism by which chromatin regulation within one tissue layer coordinates the morphogenesis of an adjacent layer.


Asunto(s)
Proteínas ADAM/metabolismo , ADN Helicasas/metabolismo , Endocardio/metabolismo , Corazón/embriología , Morfogénesis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas ADAM/genética , Proteína ADAMTS1 , Animales , Línea Celular , ADN Helicasas/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Endotelio/citología , Endotelio/metabolismo , Eritropoyesis , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/embriología , Humanos , Ratones , Neovascularización Fisiológica , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Saco Vitelino/irrigación sanguínea
13.
Front Med (Lausanne) ; 9: 951762, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452900

RESUMEN

Background: Individuals with chronic viral hepatitis are at increased risk of experiencing poor sleep quality and sleep disturbances. However, it remains unclear whether the sleep disorders associated with viral hepatitis are secondary to the comorbidities related to viral hepatitis or the direct effect of hepatitis viruses on sleep. This study investigated the direct impact of viral hepatitis B and C on sleep quality. Methods: Individuals with viral hepatitis B or C and their healthy counterparts were recruited for the present study, and they were evaluated with the Parkinson's Disease Sleep Scale-2, the Epworth Sleepiness Scale, and the Pittsburgh Sleep Quality Index in the absence of common comorbidities associated with viral hepatitis. Results: Neither hepatitis B nor hepatitis C was found to cause significant differences in insomnia symptoms or excessive daytime sleepiness. However, individuals with hepatitis C, but not hepatitis B, tended to be less likely to experience restlessness of the legs or arms at night. Conclusions: This study suggests that hepatitis viruses B and C may not cause a significant impact on sleep quality and related disorders directly. Sleep disturbances in individuals with chronic viral hepatitis may instead be attributable to hepatic decompensation or the comorbid factors associated with viral hepatitis.

14.
BMC Rheumatol ; 5(1): 15, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33781343

RESUMEN

BACKGROUND: B cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN. METHODS: Lanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells. RESULTS: In human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen. CONCLUSIONS: Lanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN.

15.
Circ Res ; 103(7): 702-9, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18723445

RESUMEN

Congenital heart diseases are traditionally considered to be multifactorial in pathogenesis resulting from environmental and genetic interactions that determine penetrance and expressivity within a genetically predisposed family. Recent evidence suggests that genetic contributions have been significantly underestimated. However, single gene defects occur only in a minority of cases, and multigenetic causes of congenital heart diseases have not been fully demonstrated. Here, we show that interactions between alleles of 3 Pbx genes, which encode homeodomain transcription factors, are sufficient to determine the phenotypic presentation of congenital heart diseases in mice. A major role is served by Pbx1, whose inactivation results in persistent truncus arteriosus. Reduction or absence of Pbx2 or Pbx3 leads to Pbx1 haploinsufficiency and specific malformations that resemble tetralogy of Fallot, overriding aorta with ventricular septal defect, and bicuspid aortic valves. Disruption of Meis1, which encodes a Pbx DNA-binding partner, results in cardiac anomalies that resemble those caused by Pbx mutations. Each of the observed cardiac defects represents developmental abnormalities affecting distinct stages of cardiac outflow tract development and corresponds to specific types of human congenital heart disease. Thus, varied deficiencies in the Pbx gene family produce a full spectrum of cardiac defects involving the outflow tract, providing a framework for determining multigenetic causes of congenital heart anomalies.


Asunto(s)
Cardiopatías Congénitas/genética , Proteínas de Homeodominio/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Alelos , Animales , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo
16.
Mol Biol Cell ; 18(10): 3800-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17634282

RESUMEN

The mitotic spindle consists of a complex network of proteins that segregates chromosomes in eukaryotes. To strengthen our understanding of the molecular composition, organization, and regulation of the mitotic spindle, we performed a system-wide two-hybrid screen on 94 proteins implicated in spindle function in Saccharomyces cerevisiae. We report 604 predominantly novel interactions that were detected in multiple screens, involving 303 distinct prey proteins. We uncovered a pattern of extensive interactions between spindle proteins reflecting the intricate organization of the spindle. Furthermore, we observed novel connections between kinetochore complexes and chromatin-modifying proteins and used phosphorylation site mutants of NDC80/TID3 to gain insights into possible phospho-regulation mechanisms. We also present analyses of She1p, a novel spindle protein that interacts with the Dam1 kinetochore/spindle complex. The wealth of protein interactions presented here highlights the extent to which mitotic spindle protein functions and regulation are integrated with each other and with other cellular activities.


Asunto(s)
Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Cromatina/metabolismo , Bases de Datos de Proteínas , Cinetocoros/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Fosforilación , Unión Proteica , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
Nat Commun ; 10(1): 2760, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235787

RESUMEN

Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure.


Asunto(s)
Redes Reguladoras de Genes/genética , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/patología , Fosfoproteínas Fosfatasas/metabolismo , Animales , Bencenoacetamidas , Células Cultivadas , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Redes y Vías Metabólicas/genética , Ratones , Ratones Noqueados , Persona de Mediana Edad , Fosfoproteínas Fosfatasas/genética , Cultivo Primario de Células , Piridinas , Sitios de Carácter Cuantitativo/genética , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN/métodos
18.
Mol Biol Cell ; 14(8): 3342-55, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12925767

RESUMEN

Although there has been a recent explosion in the identification of budding yeast kinetochore components, the physical interactions that underlie kinetochore function remain obscure. To better understand how kinetochores attach to microtubules and how this attachment is regulated, we sought to characterize the interactions among kinetochore proteins, especially with respect to the microtubule-binding Dam1 complex. The Dam1 complex plays a crucial role in the chromosome-spindle attachment and is a key target for phospho-regulation of this attachment by the Aurora kinase Ipl1p. To identify protein-protein interactions involving the Dam1 complex, and the effects of Dam1p phosphorylation state on these physical interactions, we conducted both a genome-wide two-hybrid screen and a series of biochemical binding assays for Dam1p. A two-hybrid screen of a library of 6000 yeast open reading frames identified nine kinetochore proteins as Dam1p-interacting partners. From 113 in vitro binding reactions involving all nine subunits of the Dam1 complex and 32 kinetochore proteins, we found at least nine interactions within the Dam1 complex and 19 potential partners for the Dam1 complex. Strikingly, we found that the Dam1p-Ndc80p and Dam1p-Spc34p interactions were weakened by mutations mimicking phosphorylation at Ipl1p sites, allowing us to formulate a model for the effects of phosphoregulation on kinetochore function.


Asunto(s)
Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Aurora Quinasas , Cromosomas/metabolismo , Microtúbulos/metabolismo , Mutación , Fosforilación , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo , Técnicas del Sistema de Dos Híbridos
19.
Nat Commun ; 7: 13710, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27966531

RESUMEN

Interstitial fibrosis plays a key role in the development and progression of heart failure. Here, we show that an enzyme that crosslinks collagen-Lysyl oxidase-like 2 (Loxl2)-is essential for interstitial fibrosis and mechanical dysfunction of pathologically stressed hearts. In mice, cardiac stress activates fibroblasts to express and secrete Loxl2 into the interstitium, triggering fibrosis, systolic and diastolic dysfunction of stressed hearts. Antibody-mediated inhibition or genetic disruption of Loxl2 greatly reduces stress-induced cardiac fibrosis and chamber dilatation, improving systolic and diastolic functions. Loxl2 stimulates cardiac fibroblasts through PI3K/AKT to produce TGF-ß2, promoting fibroblast-to-myofibroblast transformation; Loxl2 also acts downstream of TGF-ß2 to stimulate myofibroblast migration. In diseased human hearts, LOXL2 is upregulated in cardiac interstitium; its levels correlate with collagen crosslinking and cardiac dysfunction. LOXL2 is also elevated in the serum of heart failure (HF) patients, correlating with other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human HF.


Asunto(s)
Aminoácido Oxidorreductasas/fisiología , Insuficiencia Cardíaca/metabolismo , Miocardio/patología , Aminoácido Oxidorreductasas/sangre , Aminoácido Oxidorreductasas/metabolismo , Animales , Fibrosis/metabolismo , Humanos , Ratones Noqueados , Miocardio/metabolismo , Estrés Fisiológico
20.
J Am Coll Cardiol ; 66(22): 2522-33, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26653627

RESUMEN

BACKGROUND: The genetic determinants of heart failure (HF) and response to medical therapy remain unknown. We hypothesized that identifying genetic variants of HF that associate with response to medical therapy would elucidate the genetic basis of cardiac function. OBJECTIVES: This study sought to identify genetic variations associated with response to HF therapy. METHODS: This study compared extremes of response to medical therapy in 866 HF patients using a genome-wide approach that informed the systems-based design of a customized single nucleotide variant array. The effect of genotype on gene expression was measured using allele-specific luciferase reporter assays. Candidate gene transcription-deficient mice underwent echocardiography and treadmill exercise. The ability of the target gene agonist to rescue mice from chemically-induced HF was assessed with echocardiography. RESULTS: Of 866 HF patients, 136 had an ejection fraction improvement of 20% attributed to resynchronization (n = 83), revascularization (n = 7), tachycardia resolution (n = 2), alcohol cessation (n = 1), or medications (n = 43). Those with the minor allele for rs7767652, upstream of hypocretin (orexin) receptor-2 (HCRTR2), were less likely to have improved left ventricular function (odds ratio: 0.40 per minor allele; p = 3.29 × 10(-5)). In a replication cohort of 798 patients, those with a minor allele for rs7767652 had a lower prevalence of ejection fraction >35% (odds ratio: 0.769 per minor allele; p = 0.021). In an HF model, HCRTR2-deficient mice exhibited poorer cardiac function, worse treadmill exercise capacity, and greater myocardial scarring. Orexin, an HCRTR2 agonist, rescued function in this HF mouse model. CONCLUSIONS: A systems approach identified a novel genetic contribution to human HF and a promising therapeutic agent efficacious in an HF model.


Asunto(s)
Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Receptores de Orexina/genética , Volumen Sistólico/genética , Adulto , Anciano , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Estudio de Asociación del Genoma Completo , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA