Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(9): 4438-4446, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377556

RESUMEN

Doping lanthanide ions is an efficient method to modify the optical properties of lead-free double-perovskite halides. However, most lanthanide-doped double perovskites show a low luminescence efficiency and require a high excitation energy. Here, we have successfully prepared a series of Ho3+-doped Cs2NaBiCl6 microcrystals through a simple hydrothermal method and obtained strong characteristic emissions of Ho3+ at 492 and 657 nm under low-energy excitation (449 nm). After codoping Mn2+, apart from the characteristic emissions from Ho3+ under 450 nm wavelength excitation, the orangish-red luminescence consisting of the emission band centered at 591 nm from Mn2+ and a sharp emission peak at 657 nm from Ho3+ is obtained under 355 nm UV light excitation. Photoluminescence (PL) emission and excitation spectra, along with the PL decay curves, confirm the existence of an energy-transfer channel from Cs2NaBiCl6 to Mn2+ and then from Mn2+ to Ho3+. The enhanced absorption efficiency (10.5 → 70.7%) suggests that the codoping of Mn2+ overcomes the low absorption efficiency caused by f-f forbidden transitions of Ho3+. Finally, the diverse luminescent performance within the Cs2NaBiCl6:Ho3+, Mn2+ phosphor is realized by altering the excitation wavelength, thereby enabling its application in warm-white-light-emitting diodes and plant growth in this work.

2.
Inorg Chem ; 63(19): 8899-8907, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38695311

RESUMEN

Given the escalating significance of near-infrared (NIR) spectroscopy across industries, agriculture, and various domains, there is an imminent need to address the development of a novel generation of intelligent NIR light sources. Here, a series of Cr3+-doped BaLaMgNbO6 (BLMN) ultrabroadband NIR phosphor with a coverage range of 650-1300 nm were developed. The emission peak locates at 830 nm with a full width at half maximum of 210 nm. This ultrabroadband emission originates from the 4T2→4A2 transition of Cr3+ and the simultaneous occupation of [MgO6] and [NbO6] octahedral sites confirmed by low photoluminescence spectra (77-250 K), time-resolved photoluminescence spectra, and electron paramagnetic resonance spectra. The fluxing strategy improves the luminescence intensity and thermal stability of BLMN:0.02Cr3+ phosphors. The internal quantum efficiency (IQE) is 51%, external quantum efficiency (EQE) can reach 33%, and thermal stability can be maintained at 60%@100 °C. Finally, we successfully demonstrated the application of BLMN:Cr3+ ultrabroadband in the qualitative analysis of organic matter and food freshness detection.

3.
Inorg Chem ; 63(8): 3901-3912, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38361452

RESUMEN

It is significant and valuable to investigate novel and high-performance red-emitting phosphors for high-quality wLED applications. Based on this consideration, we developed a novel Mn2+-doped red Ca18K3Sc(PO4)14:Mn2+ (CKSP:Mn2+) phosphor. The emission peak of CKSP:Mn2+ is located at 640 nm, presenting a broadband red emission with a fwhm of 79 nm under 405 nm excitation. The CKSP:1.0Mn2+ phosphor shows superior thermal stability. At 150 °C, the integrated PL intensity and peak intensity of the CKSP:1.0Mn2+ phosphor maintain 93.2 and 85.7% of those at 25 °C, respectively. Through the strategy of energy transfer among Ce3+-Eu2+-Mn2+, the PL intensity of Mn2+ has increased by nearly 118 times, and the quantum yield has improved from 6 up to 72%. The structure-related photoluminescence and energy transfer mechanisms are discussed in detail. The as-fabricated wLED pumped by a 370 nm LED chip combining commercial the green (Sr,Ba)2SiO4:Eu2+ phosphor, blue BaMgAl10O17:Eu2+ phosphor, and the as-synthesized CKSP:1.0Mn2+, 0.02Eu2+, 0.40Ce3+ phosphor shows excellent color quality (CCT = 5555 K, Ra = 87), which indicates that the CKSP:1.0Mn2+, 0.02Eu2+, 0.40Ce3+ phosphor has extraordinary broad prospects in future wLED applications.

4.
J Nanobiotechnology ; 22(1): 193, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643134

RESUMEN

Pyroptosis, a novel type of programmed cell death (PCD), which provides a feasible therapeutic option for the treatment of tumors. However, due to the hypermethylation of the promoter, the critical protein Gasdermin E (GSDME) is lacking in the majority of cancer cells, which cannot start the pyroptosis process and leads to dissatisfactory therapeutic effects. Additionally, the quick clearance, systemic side effects, and low concentration at the tumor site of conventional pyroptosis reagents restrict their use in clinical cancer therapy. Here, we described a combination therapy that induces tumor cell pyroptosis via the use of ultrasound-targeted microbubble destruction (UTMD) in combination with DNA demethylation. The combined application of UTMD and hydralazine-loaded nanodroplets (HYD-NDs) can lead to the rapid release of HYD (a demethylation drug), which can cause the up-regulation of GSDME expression, and produce reactive oxygen species (ROS) by UTMD to cleave up-regulated GSDME, thereby inducing pyroptosis. HYD-NDs combined with ultrasound (US) group had the strongest tumor inhibition effect, and the tumor inhibition rate was 87.15% (HYD-NDs group: 51.41 ± 3.61%, NDs + US group: 32.73%±7.72%), indicating that the strategy had a more significant synergistic anti-tumor effect. In addition, as a new drug delivery carrier, HYD-NDs have great biosafety, tumor targeting, and ultrasound imaging performance. According to the results, the combined therapy reasonably regulated the process of tumor cell pyroptosis, which offered a new strategy for optimizing the therapy of GSDME-silenced solid tumors.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Piroptosis/fisiología , Microburbujas , Neoplasias/tratamiento farmacológico , Apoptosis , Hidralazina/farmacología , Hidralazina/uso terapéutico
5.
J Nanobiotechnology ; 21(1): 35, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717899

RESUMEN

Immunotherapy had demonstrated inspiring effects in tumor treatment, but only a minority of people could benefit owing to the hypoxic and immune-suppressed tumor microenvironment (TME). Therefore, there was an urgent need for a strategy that could relieve hypoxia and increase infiltration of tumor lymphocytes simultaneously. In this study, a novel acidity-responsive nanoscale ultrasound contrast agent (L-Arg@PTX nanodroplets) was constructed to co-deliver paclitaxel (PTX) and L-arginine (L-Arg) using the homogenization/emulsification method. The L-Arg@PTX nanodroplets with uniform size of about 300 nm and high drug loading efficiency displayed good ultrasound diagnostic imaging capability, improved tumor aggregation and achieved ultrasound-triggered drug release, which could prevent the premature leakage of drugs and thus improve biosafety. More critically, L-Arg@PTX nanodroplets in combination with ultrasound targeted microbubble destruction (UTMD) could increase cellular reactive oxygen species (ROS), which exerted an oxidizing effect that converted L-Arg into nitric oxide (NO), thus alleviating hypoxia, sensitizing chemotherapy and increasing the CD8 + cytotoxic T lymphocytes (CTLs) infiltration. Combined with the chemotherapeutic drug PTX-induced immunogenic cell death (ICD), this promising strategy could enhance immunotherapy synergistically and realize powerful tumor treatment effect. Taken together, L-Arg@PTX nanodroplets was a very hopeful vehicle that integrated drug delivery, diagnostic imaging, and chemoimmunotherapy.


Asunto(s)
Medios de Contraste , Nanopartículas , Humanos , Óxido Nítrico , Microburbujas , Línea Celular Tumoral , Paclitaxel/farmacología , Inmunoterapia , Hipoxia
6.
J Nanobiotechnology ; 21(1): 214, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37420266

RESUMEN

Despite rapid advances in metabolic therapies over the past decade, their efficacy in melanoma has been modest, largely due to the interaction between cancer-associated fibroblasts (CAFs) and cancer cells to promote cancer growth. Altering the tumor microenvironment (TME) is challenging and elusive. CAFs is critical for glutamine deprivation survival in melanoma. In this research, we assembled a CAFs-targeted, controlled-release nanodroplets for the combined delivery of the amino acid transporter ASCT2 (SLC1A5) inhibitor V9302 and GLULsiRNA (siGLUL). The application of ultrasound-targeted microbubble disruption (UTMD) allows for rapid release of V9302 and siGLUL, jointly breaking the glutamine metabolism interaction between CAFs and cancer cells on one hand, on the other hand, blocking activated CAFs and reducing the expression of extracellular matrix (ECM) to facilitate drug penetration. In addition, ultrasound stimulation made siGLUL more accessible to tumor cells and CAFs, downregulating GLUL expression in both cell types. FH-V9302-siGLUL-NDs also serve as contrast-enhanced ultrasound imaging agents for tumor imaging. Our study developed and reported FH-NDs as nanocarriers for V9302 and siGLUL, demonstrating that FH-V9302-siGLUL-NDs have potential bright future applications for integrated diagnostic therapy. Graphical Abstract.


Asunto(s)
Fibroblastos Asociados al Cáncer , Melanoma , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/patología , Glutamina , Microambiente Tumoral/fisiología , Neoplasias/patología , Melanoma/metabolismo , Ultrasonografía , Antígenos de Histocompatibilidad Menor/metabolismo , Sistema de Transporte de Aminoácidos ASC/metabolismo
7.
Inorg Chem ; 61(3): 1756-1764, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35005893

RESUMEN

Co-doping mixed-valence Eu2+/3+ in a single-phase phosphor is an efficient method to realize the emission color regulation, which holds great potential for anticounterfeiting and ratiometric temperature sensing. Here, the mixed-valence Eu-doped Sr1.95+xLi1-xSi1-xAlxO4F (0 ≤ x ≤ 0.25) phosphors were designed and prepared under a reducing atmosphere. The correlation of local phase structures and luminescence properties was discussed. Replacing Si4+-Li+ ion pairs with Al3+-Sr2+ ion pairs compresses the Sr sites occupied by Eu2+, and it stabilizes Eu3+ in a reducing atmosphere and leads to the coexistence of Eu2+ and Eu3+ in single-phase Sr1.95+xLi1-xSi1-xAlxO4F:0.05Eu (0 ≤ x ≤ 0.25) phosphors. Based on the wavelength-dependent luminescence color behaviors of Sr1.95+xLi1-xSi1-xAlxO4F:0.05Eu phosphors, the fluorescent anticounterfeit papers/patterns containing Sr1.95+xLi1-xSi1-xAlxO4F:0.05Eu phosphors were the same as ordinary paper under ambient conditions. However, the hidden colors or images can be read out with green-orange luminescence under 365/300 nm light excitation. Benefiting from the diverse thermal response emission behaviors of Eu2+ (530 nm) and Eu3+ (703 nm), Sr1.95+xLi1-xSi1-xAlxO4F:0.05Eu phosphors exhibit temperature sensing performances, with the maximum absolute and relative sensitivity being 0.0294 K-1 at 573 K and 0.83% K-1 at 348 K. More importantly, Sr1.95+xLi1-xSi1-xAlxO4F:0.05Eu phosphors showed excellent stability in humid, acid, and alkali environments, which contributed to applying mixed-valence Eu2+/3+-doped Sr1.95+xLi1-xSi1-xAlxO4F to the fields of multicolor anticounterfeiting and noncontact optical thermometry.

8.
J Ultrasound Med ; 40(12): 2665-2674, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33629753

RESUMEN

OBJECTIVES: This study aimed to evaluate the stiffness of 2-dimensional (2D) shear wave elastography (SWE) in preoperatively predicting the prognostic stage groups of invasive ductal carcinoma (IDC). METHODS: Eighty-six newly diagnosed lesions on 83 patients with IDCs were analyzed. All parameters from conventional ultrasound and stiffness to virtual touch tissue imaging and quantification were collected, and mean shear wave velocity (SWVmean) was calculated. Data on maximum diameter, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), histologic grading system and Tumor Node Metastasis (TNM) stages were collected. The levels of maximum shear wave velocity (SWVmax), minimum shear wave velocity (SWVmin) and SWVmean were compared. In receiver operating characteristic (ROC) curves analysis, the diagnostic efficacy was found in area under the curve (AUC). Parallel mode was used to improve the predictive value of sensitivity. RESULTS: The median stiffness of SWVmax and SWVmean for IDCs were 9.38 and 6.32 m/s for late stage (stages II, III, IV) and 6.39 m/s and 4.72 m/s for early stage (stage I) of the prognostic stage groups, respectively. The median stiffness values in the late stage were significantly higher than those in the early stage (P = .003, P = .005). The optimal cutoff stiffness of SWVmax and SWVmean were 8.62 and 6.13 m/s, respectively. In ROC curves analysis, the AUC for SWVmax was 0.742, and it showed a better diagnostic value than SWVmean (0.725). In predictive diagnosis, the sensitivity for SWVmax and SWVmean were both 62.50%. The parallel mode improved the prediction power of sensitivity to 68.75%. CONCLUSIONS: Preoperative SWV level may serve as a promising prognostic imaging indicator for breast IDCs.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal , Diagnóstico por Imagen de Elasticidad , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Pronóstico , Curva ROC , Sensibilidad y Especificidad
9.
Angew Chem Int Ed Engl ; 60(26): 14644-14649, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33825295

RESUMEN

Near-infrared (NIR)-emitting phosphor materials have been extensively developed for optoelectronic and biomedical applications. Although Cr3+ -activated phosphors have been widely reported, it is challenging to achieve ultra-broad and tunable NIR emission. Here, a new ultra-broadband NIR-emitting LiIn2 SbO6 :Cr3+ phosphor with emission peak at 965 nm and a full-width at half maximum of 217 nm is reported. Controllable emission tuning from 965 to 892 nm is achieved by chemical unit cosubstitution of [Zn2+ -Zn2+ ] for [Li+ -In3+ ], which can be ascribed to the upshift of 4 T2g energy level due to the strengthened crystal field. Moreover, the emission is greatly enhanced, and the FWHM reaches 235 nm. The as-prepared luminescent tunable NIR-emitting phosphors have demonstrated the potential in night-vision and NIR spectroscopy techniques. This work proves the feasibility of chemical unit cosubstitution strategy in emission tuning of Cr3+ -doped phosphors, which can stimulate further studies on the emission-tunable NIR-emitting phosphor materials.

10.
Inorg Chem ; 59(9): 6026-6038, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32275407

RESUMEN

Phosphor-converted white-light-emitting diodes (pc-WLEDs) rely on combining a near-ultraviolet (n-UV) or blue chip with trichromatic and yellow-emitting phosphors. It is challenging to discover cyan-green-emitting (480-520 nm) phosphors for compensating the spectral gap and producing full-spectrum white light. In this work, we successfully discovered two unprecedented bright cyan-green emitting Rb3RV2O8 (R = Y, Lu) phosphors that gives emission bands centered at 500 nm upon 362 nm n-UV light excitation. Interestingly, the both self-activated compounds exhibit high internal quantum efficiencies (IQEs) of 71% for Rb3YV2O8 and 85% for Rb3LuV2O8, respectively. Moreover, controllable emission color can be successfully tuned from cyan-green to orange-red across the warm white light region by design strategy of VO43- → Eu3+ energy transfer. The thermal quenching of as-prepared phosphors could be effectively mitigated by this design strategy. Finally, the as-fabricated n-UV (λex = 370 nm) pumped phosphor-converted (pc) W-LED devices utilizing Rb3RV2O8 (R = Y, Lu) along with commercial phosphors demonstrate well-distributed warm white light with high color-rendering index (CRI) of 91.9 and 93.5, and a low correlated color temperature (CCT) of 5095 and 4946 K. It suggests that the both vanadate phosphors have potential applications in full-spectrum pc-WLEDs.

11.
Inorg Chem ; 57(15): 9251-9259, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29995392

RESUMEN

In the pursuit of high-quality W-LED lighting, the precise control of emission color of phosphor materials is indispensable. Herein we report a series of single-composition Bi3+-doped LiCa3MgV3O12 garnet-structure phosphors, whose emission colors under n-UV excitation could be tuned from bluish green (480 nm) to yellow (562 nm) on the basis of local lattice distortion and VO43- → Bi3+ energy transfer. Furthermore, full-color luminescence tuning from bluish green to orangish red across the warm white light region was successfully achieved by designing VO43- → Bi3+ → Eu3+ energy transfers. More interestingly, the thermal stabilities of as-prepared samples were gradually enhanced through designing VO43-/Bi3+ → Eu3+ energy transfers. This work provides a new perspective for color tuning originating from simultaneous local lattice distortion and multiple energy transfers.

12.
Med Sci Monit ; 24: 9054-9062, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30546004

RESUMEN

BACKGROUND Ultrasound/microbubble (USMB)-mediated sonoporation is a new strategy with minimal procedural invasiveness for targeted and site-specific drug delivery to tumors. The purpose of this study was to explore the effect of different breast cancer cell lines on sonoporation efficiency, and then to identify an optimal combination of USMB parameters to maximize the sonoporation efficiency for each tumor cell line. MATERIAL AND METHODS Three drug-sensitive breast cell lines - MCF-7, MDA-MB-231, and MDA-MB-468 - and 1 multidrug resistance (MDR) cell line - MCF-7/ADR - were chosen. An orthogonal array experimental design approach based on 3 levels of 3 parameters (A: microbubble concentration, 10%, 20%, and 30%, B: sound intensity, 0.5, 1.0, and 1.5 W/cm², C: irradiation time, 30, 60, and 90 s) was employed to optimize the sonoporation efficiency. RESULTS The optimal USMB parameter combinations for different cell lines were diverse. Under optimal parameter combinations, the maximum sonoporation efficiency differences between different breast tumor cell lines were statistically significant (MDA-MB-231: 46.70±5.79%, MDA-MB-468: 53.44±5.69%, MCF-7: 59.88±5.53%, MCF-7/ADR: 65.39±4.01%, P<0.05), so were between drug-sensitive cell line and MDR cell line (MCF-7: 59.88±5.53%, MCF-7/ADR: 65.39±4.01%, p=0.026). CONCLUSIONS Different breast tumor cell lines have their own optimal sonoporation. Drug-resistant MCF-7/ADR cells had higher sonoporation efficiency than drug-sensitive MCF-7 cells. The molecular subtype of tumors should be considered when sonoporation is applied, and optimal parameter combination may have the potential to improve drug-delivery efficiency by increasing the sonoporation efficiency.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Microburbujas/uso terapéutico , Terapia por Ultrasonido/métodos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Células MCF-7 , Fenotipo , Proyectos de Investigación , Ondas Ultrasónicas
13.
Inorg Chem ; 56(11): 6131-6140, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28481110

RESUMEN

A series of Eu3+/Tb3+/Mn2+-ion-doped Ca19Ce(PO4)14 (CCPO) phosphors have been prepared via the conventional high-temperature solid-state reaction process. Under UV radiation, the CCPO host presents a broad blue emission band from Ce3+ ions, which are generated during the preparation process because of the formation of deficiency. The Eu3+-doped CCPO phosphors can exhibit magenta to red-orange emission as a result of the abnormal coexistence of Ce3+/Ce4+/Eu3+ and the metal-metal charge-transfer (MMCT) effect between Ce3+ and Eu3+. When Tb3+/Mn2+ are doped into the hosts, the samples excited with 300 nm UV light present multicolor emissions due to energy transfer (ET) from the host (Ce3+) to the activators with increasing activator concentrations. The emitting colors of CCPO:Tb3+ phosphors can be tuned from blue to green, and the CCPO:Mn2+ phosphors can emit red light. The ET mechanism from the host (Ce3+) to Tb3+/Mn2+ is demonstrated to be a dipole-quadrapole interaction for Ce3+ → Tb3+ and an exchange interaction for Ce3+ → Mn2+ in CCPO:Tb3+/Mn2+. Abundant emission colors containing white emission were obtained in the Tb3+- and Mn2+-codoped CCPO phosphors through control of the levels of doped Tb3+ and Mn2+ ions. The white-emitted CCPO:Tb3+/Mn2+ phosphor exhibited excellent thermal stability. The photoluminescence properties have shown that these materials might have potential for UV-pumped white-light-emitting diodes.

14.
Inorg Chem ; 56(19): 11900-11910, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28926231

RESUMEN

Narrow band red-emitting A2GeF6:Mn4+ (A = Na, K, Rb, Cs) phosphors were prepared through a two-step precipitation-cation exchange route using a K2MnF6 precursor as the Mn4+ source. The phase purity, morphology, and constituent were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectric spectroscopy (XPS), and electron paramagnetic resonance (EPR) examination. Optical properties were investigated by photoluminescence spectra (PL and PLE) and high-resolution PL. A temperature-dependent PL examination was performed to investigate the electron-phonon coupling emission mechanism of Mn4+ in these alkali fluorogermanates. The PL data show that both ordered distribution and appropriate distance between Mn4+ ions are propitious for enhancement of the emission intensity. A resonance emission enhancement (REE) mechanism has been proposed to explain the intensity increment among these products. These phosphors present bright red emission under blue light (467 nm) illumination, among which Cs2GeF6:0.03Mn4+ exhibits the most excellent optical properties with a quantum yield (QY) of 93%. A WLED (white light-emitting diode) fabricated with blend of commercial YAG:Ce3+ and this phosphor emits intense warm white light with low color temperature (CCT = 3385 K) and high color rendering index (Ra = 90.5), implying its potential application as red phosphor in WLEDs.

15.
J Ultrasound Med ; 36(4): 733-740, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28039937

RESUMEN

OBJECTIVES: The present study was conducted to quantitatively evaluate the influence of urinary stone composition and size on color Doppler twinkling artifact. METHODS: Calcium oxalate monohydrate (COM), apatite, L-cystine, and uric acid (UA) stone phantoms with 10 different sizes were prepared artificially and embedded in the renal sinus of porcine kidneys in vitro. Color Doppler ultrasound scanning was performed on the phantoms and TA pictures were recorded. The length of the twinkling artifact (TAL) and width of twinkling artifact (TAW) were measured. The color pixels representing twinkling artifact intensity (TAI) were calculated. RESULTS: There were significant differences in the appearance of TA among the four types of stone phantoms (P < .05). The mean value of TAI of UA stones was the strongest, followed by L-cystine, apatite, and COM. A significantly positive correlation was found between TA and stone size (rTAI = 0.801, rTAL = 0.838, rTAW = 0.584, respectively; P <.05). CONCLUSIONS: The appearance of TA in association with urinary stones is highly dependent on stone composition and size.


Asunto(s)
Artefactos , Fantasmas de Imagen , Ultrasonografía Doppler en Color/métodos , Cálculos Urinarios/química , Cálculos Urinarios/diagnóstico por imagen , Estudios de Evaluación como Asunto , Humanos
16.
Inorg Chem ; 55(15): 7593-604, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27415966

RESUMEN

A series of Ce(3+), Tb(3+), Eu(3+) doped Ba2Y2(PO4)2(SiO4) (BYSPO) phosphors were synthesized via the high-temperature solid-state reaction route. X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared, solid-state NMR, photoluminescence (PL) including temperature-dependent PL, and fluorescent decay measurements were conducted to characterize and analyze as-prepared samples. BYSPO was obtained by the substitution of Y+SiO4 for Ba+PO4 in Ba3Y(PO4)3 (BYPO). The red shift of PL emission from 375 to 401 nm occurs by comparing BYSPO:0.14Ce(3+) with BYPO:0.14Ce(3+) under 323 nm UV excitation. More importantly, the excitation edge can be extended from 350 to 400 nm, which makes it be excited by UV/n-UV chips (330-410 nm). Tunable emission color from blue to green can be observed under 365 nm UV excitation based on the energy transfer from Ce(3+) to Tb(3+) ions after codoping Tb(3+) into BYSPO:0.14Ce(3+). Moreover, energy transfer from Tb(3+) to Eu(3+) ions also can be found in BYSPO:Tb(3+),Eu(3+) phosphors, resulting in the tunable color from green to orange red upon 377 nm UV excitation. Energy transfer properties were demonstrated by overlap of excitation spectra, variations of emission spectra, and decay times. In addition, energy transfer mechanisms from Ce(3+) to Tb(3+) and Tb(3+) to Eu(3+) in BYSPO were also discussed in detail. Quantum yields and CIE chromatic coordinates were also presented. Generally, the results suggest their potential applications in UV/n-UV pumped LEDs.

17.
J Basic Microbiol ; 56(7): 741-52, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26879582

RESUMEN

Streptococcus sanguinis (S. sanguinis) is a commensal oral streptococci that produces hydrogen peroxide (H2 O2 ), and this production is dependent on pyruvate oxidase (SpxB) activity. In addition to its well-known role in intraspecies or interspecies competitions, recent studies have shown that H2 O2 produced by S. sanguinis under aerobic conditions not only upregulates biofilm formation and eDNA release but also regulates cell death without obvious cell lysis. Here, we report that S. sanguinis exhibits characteristic hallmarks of eukaryotic apoptosis when it encounters endogenous and exogenous H2 O2 . As the most common mode of programmed cell death (PCD), apoptosis is accompanied by a series of biochemical and morphological events, including DNA fragmentation, chromosome condensation, membrane potential depolarization, phosphatidylserine (PS) exposure, and caspase substrate binding protein activity changes. In addition, we also provide genetic evidence that there is decreased expression of the related DNA repair genes comEA, recA, dnaC, dinG, and pcrA in the wild-type compared to the isogenic spxB mutant in S. sanguinis. Our data suggest that endogenous H2 O2 is the most important agent in this development process in S. sanguinis.


Asunto(s)
Fragmentación del ADN/efectos de los fármacos , Reparación del ADN/genética , Peróxido de Hidrógeno/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Piruvato Oxidasa/metabolismo , Streptococcus sanguis/metabolismo , Apoptosis/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Peróxido de Hidrógeno/efectos adversos , Fosfatidilserinas/metabolismo
18.
Inorg Chem ; 54(16): 7992-8002, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26247562

RESUMEN

A series of Ce(3+)-doped α-Ca1.65Sr0.35SiO4 (CSSO) phosphors without and with the substitutions of Si by Al/Ga/B were synthesized via the high-temperature solid-state reaction process. X-ray diffraction patterns and Rietveld refinements were used to demonstrate the successful incorporations of Al/Ga/B into CSSO:Ce(3+). Without Al/Ga/B, the Ce(3+) singly doped CSSO phosphors present intense blue emission, which correspond to the broad emission bands in visible region with the wavelength range from 360 to 580 nm upon 350 nm excitation. The optimal emission intensity occurs in CSSO:0.05Ce(3+) sample with the emission peak wavelength at 436 nm. With the introduction of Al/Ga/B into the CSSO:0.05Ce(3+), the emission peak shifts from 436 to 457/465/446 nm under 365 nm excitation, respectively. The red shift of Ce(3+) emission is attributed to the polyhedral distortion of the cations, resulting in the enhancement of crystal field spitting due to the variations of the adjacent (Al/Ga/B,Si)O4 polyhedron. Moreover, the temperature-dependent photoluminescence was determined to be of light impact to CSSO:Ce(3+) with the introduction of Al/Ga/B. This research is useful for enriching the emission colors of Ce(3+)-activated phosphors.

19.
Phys Chem Chem Phys ; 17(6): 4283-92, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25573075

RESUMEN

In this work, a series of Eu(3+), Tb(3+), and Dy(3+) singly-doped and co-doped LaNbO4 (LNO) phosphors have been synthesized by a high-temperature solid-state reaction route. X-ray diffraction (XRD) along with Rietveld refinement, diffuse reflection spectra, photoluminescence (PL) and cathodoluminescence (CL) properties, decay lifetimes, and PL quantum yields (QYs) were exploited to characterize the phosphors. Under UV excitation, energy transfer process from the host to the activators exists in the singly-doped samples, which leads to tunable emission color from blue to red for LNO:Eu(3+), green for LNO:Tb(3+), and yellow including white for LNO:Dy(3+). In Eu(3+) and Tb(3+) co-doped phosphors, LNO:Eu(3+), Tb(3+), the energy transfers from the host to the activators and Tb(3+) to Eu(3+) ions have also been deduced from the PL spectra, resulting in tunable emission color from green to red by adjusting the concentration ratio of Eu(3+) and Tb(3+) ions. The decay times monitored at host emission and Tb(3+) emission confirm the existence of energy transfer in the as-prepared samples. The best quantum efficiency can reach 43.2% for LNO:0.01Tb(3+) among all the as-prepared phosphors. In addition, the CL spectra of LNO:Eu(3+)/Tb(3+)/Dy(3+) are a little different from their PL spectra because another emission envelope around 530 nm appears in the samples, which is attributed to the bombardment of higher energy excitation source of low-voltage electron beam. However, the characteristic emissions similar to PL spectra were reserved. Moreover, the CL spectrum of LNO:0.02Tb(3+) has stronger emission intensity than that of ZnO:Zn commercial product. These results from the PL and CL properties of LNO:Eu(3+)/Tb(3+)/Dy(3+) suggest their potential in solid-state lighting and display fields.

20.
Chem Soc Rev ; 43(5): 1372-86, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24346246

RESUMEN

White light-emitting diodes (WLEDs) as new solid-state light sources have a greatly promising application in the field of lighting and display. So far much effort has been devoted to exploring novel luminescent materials for WLEDs. Currently the major challenges in WLEDs are to achieve high luminous efficacy, high chromatic stability, brilliant color-rending properties, and price competitiveness against fluorescent lamps, which rely critically on the phosphor properties. In recent years, numerous efforts have been made to develop single-phase white-light-emitting phosphors for near-ultraviolet or ultraviolet excitation to solve the above challenges with certain achievements. This review article highlights the current methods to realize the white light emission in a single-phase host, including: (1) doping a single rare earth ion (Eu(3+), Eu(2+) or Dy(3+)) into appropriate single-phase hosts; (2) co-doping various luminescent ions with different emissions into a single matrix simultaneously, such as Tm(3+)/Tb(3+)/Eu(3+), Tm(3+)/Dy(3+), Yb(3+)/Er(3+)/Tm(3+)etc.; (3) codoping different ions in one host to control emission color via energy transfer processes; and (4) controlling the concentration of the defect and reaction conditions of defect-related luminescent materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA