Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(9): e0013923, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37668407

RESUMEN

Paenibacillus polymyxa WLY78, a N2-fixing bacterium, has great potential use as a biofertilizer in agriculture. Recently, we have revealed that GlnR positively and negatively regulates the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) in P. polymyxa WLY78 by binding to two loci of the nif promoter according to nitrogen availability. However, the regulatory mechanisms of nitrogen metabolism mediated by GlnR in the Paenibacillus genus remain unclear. In this study, we have revealed that glutamine synthetase (GS) and GlnR in P. polymyxa WLY78 play a key role in the regulation of nitrogen metabolism. P. polymyxa GS (encoded by glnA within glnRA) and GS1 (encoded by glnA1) belong to distinct groups: GSI-α and GSI-ß. Both GS and GS1 have the enzyme activity to convert NH4+ and glutamate into glutamine, but only GS is involved in the repression by GlnR. GlnR represses transcription of glnRA under excess nitrogen, while it activates the expression of glnA1 under nitrogen limitation. GlnR simultaneously activates and represses the expression of amtBglnK and gcvH in response to nitrogen availability. Also, GlnR regulates the expression of nasA, nasD1D2, nasT, glnQHMP, and glnS. IMPORTANCE In this study, we have revealed that Paenibacillus polymyxa GlnR uses multiple mechanisms to regulate nitrogen metabolism. GlnR activates or represses or simultaneously activates and inhibits the transcription of nitrogen metabolism genes in response to nitrogen availability. The multiple regulation mechanisms employed by P. polymyxa GlnR are very different from Bacillus subtilis GlnR which represses nitrogen metabolism under excess nitrogen. Both GS encoded by glnA within the glnRA operon and GS1 encoded by glnA1 in P. polymyxa WLY78 are involved in ammonium assimilation, but only GS is required for regulating GlnR activity. The work not only provides significant insight into understanding the interplay of GlnR and GS in nitrogen metabolism but also provides guidance for improving nitrogen fixation efficiency by modulating nitrogen metabolism.

2.
Artículo en Inglés | MEDLINE | ID: mdl-33661090

RESUMEN

Three fast-growing rhizobial strains isolated from effective nodules of common vetch (Vicia sativa L.) were characterized using a polyphasic approach. All three strains were assigned to the genus Rhizobium on the basis of the results of 16S rRNA gene sequence analysis. Phylogenetic analysis based on concatenated atpD-recA genes separated the strains into a distinct lineage represented by WYCCWR 11279T, which showed average nucleotide identity values of 95.40 and 93.61 % with the most similar phylogenetic type strains of Rhizobium sophorae CCBAU 03386T and Rhizobium laguerreae FB TT, respectively. The digital DNA-DNA hybridization relatedness values between WYCCWR 11279T and the closest related type strains were less than 70 %. Therefore, a novel rhizobial species is proposed, Rhizobium changzhiense sp. nov., and strain WYCCWR 11279T (=HAMBI 3709T=LMG 31534T) is designated as the type strain for the novel species.

3.
Int J Syst Evol Microbiol ; 68(6): 1930-1936, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29676730

RESUMEN

Three chickpea rhizobial strains (WYCCWR 10195T=S1-3-7, WYCCWR 10198=S1-4-3 and WYCCWR 10200=S1-5-1) isolated from Northwest China formed a group affiliated to Mesorhizobium based on 16S rRNA gene sequence comparison. To clarify their species status, multilocus sequence analysis and average nucleotide identity (ANI) values of whole genome sequences between the novel group and the type strains of the related species were further performed. Similarities of 95.7-96.6 % in the concatenated sequences of atpD-recA-glnII and 91.9-93.1 % of ANI values to the closest-related species Mesorhizobium muleiense, Mesorhizobium mediterraneum and Mesorhizobium temperatum demonstrated the novel group a unique genospecies. The most abundant fatty acid in cells of WYCCWR 10195T were C19 : 0 cyclo ω8c (51.4 %), followed by C18 : 1 ω7c 11-methyl (9.5 %) and C16 : 0 (9.3 %). Its genome size was 6.37 Mbp, comprising 6633 predicted genes with a DNA G+C content of 61.9 mol%. The similarities of 99.0-99.8 % for the nodC gene and 98.3-99.44 % for the nifH gene to those of the chickpea rhizobial species and nodulation with Cicer arietinum L. confirmed the strains of the new genospecies as symbiovar ciceri. The weak utilization of most of the tested sugars/organic acids and non-utilization of l(+)-rhamnose, l-cysteine and l-glycine as sole carbon source, tolerance to 1 % (w/v) NaCl, resistance to 5 µg ml-1 chloromycetin and non-hydrolysis of l-tyrosine distinguished the novel group from the related species and supported this group as a novel species, for which the name Mesorhizobium wenxiniae sp. nov. is proposed, with WYCCWR 10195T (=S1-3-7=HAMBI 3692T=LMG 30254T) as the type strain.


Asunto(s)
Cicer/microbiología , Mesorhizobium/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Mesorhizobium/genética , Mesorhizobium/aislamiento & purificación , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
4.
Front Microbiol ; 14: 1137355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937264

RESUMEN

Nitrogenase in some bacteria and archaea catalyzes conversion of N2 to ammonia. To reconstitute a nitrogenase biosynthetic pathway in a eukaryotic host is still a challenge, since synthesis of nitrogenase requires a large number of nif (nitrogen fixation) genes. Viral 2A peptide mediated "cleavage" of polyprotein is one of strategies for multigene co-expression. Here, we show that cleavage efficiency of NifB-2A-NifH polyprotein linked by four different 2A peptides (P2A, T2A, E2A, and F2A) in Saccharomyces cerevisiae ranges from ~50% to ~90%. The presence of a 2A tail in NifB, NifH, and NifD does not affect their activity. Western blotting shows that 9 Nif proteins (NifB, NifH, NifD, NifK, NifE, NifN, NifX, HesA, and NifV) from Paenibacillus polymyxa that are fused into two polyproteins via 2A peptides are co-expressed in S. cerevisiae. Expressed NifH from Klebsiella oxytoca NifU and NifS and P. polymyxa NifH fusion linked via 2A in S. cerevisiae exhibits Fe protein activity.

5.
PLoS One ; 18(8): e0290556, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616286

RESUMEN

Chemical nitrogen fertilizer can maintain crop productivity, but overuse of chemical nitrogen fertilizers leads to economic costs and environmental pollution. One approach to reduce use of nitrogen fertilizers is to transfer nitrogenase biosynthetic pathway to non-legume plants. Fe protein encoded by nifH and MoFe protein encoded by nifD and nifK are two structural components of nitrogenase. NifB encoded by nifB is a critical maturase that catalyzes the first committed step in the biosynthesis of nitrogenase FeMo-cofactor that binds and reduces N2. Expression of the nifB, nifH, nifD and nifK is essential to generate plants that are able to fix atmospheric N2. In this study, the four genes (nifB, nifH, nifD and nifK) from Paenibacillu polymyxaWLY78 were assembled in plant expression vector pCAMBIA1301 via Cre/LoxP recombination system, yielding the recombinant expression vector pCAMBIA1301-nifBHDK. Then, the four nif genes carried in the expression vector were co-introduced into upland cotton R15 using Agrobacterium tumefaciens-mediated transformation. Homozygous transgenic cotton lines B2, B5 and B17 of T3 generation were selected by PCR and RT-PCR. qRT-PCR showed that nifB, nifH, nifD and nifK were co-expressed in the transgenic cottons at similar levels. Western blotting analysis demonstrated that NifB, NifH, NifD and NifK were co-produced in the transgenic cottons. Co-expression of the four critical Nif proteins (NifB, NifH, NifD and NifK) in cottons represents an important step in engineering nitrogenase biosynthetic pathway to non-legume plants.


Asunto(s)
Gossypium , Nitrogenasa , Gossypium/genética , Nitrogenasa/genética , Fertilizantes , Agrobacterium tumefaciens , Nitrógeno
6.
FEMS Microbiol Lett ; 368(20)2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34755861

RESUMEN

Non-Saccharomyces yeasts are important players during winemaking and may come from grapes grown in vineyards. To study the diversity of non-Saccharomyces yeasts on grape berry surfaces, 433 strains were isolated from different Cabernet Sauvignon vineyards grown in Henan Province. Our results demonstrated that these strains were classified into 16 morphotypes according to their growth morphology on Wallerstein Laboratory agar medium, and were identified as seven species from four genera-Hanseniaspora opuntiae, Hanseniaspora vineae, Hanseniaspora uvarum, Pichia occidentalis, Pichia kluyveri, Issatchenkia terricola and Saturnispora diversa-based on a series of molecular biological experiments. Hanseniaspora opuntiae was obtained from all sampling sites except Changyuan County, while Pichia kluyveri and Saturnispora diversa were only found in sites of Zhengzhou Grape Resource Garden and Minquan County, respectively. The site Minquan was home of the greatest species richness, while only one single species (Hanseniaspora opuntiae) was detected at NAPA winery from Zhengzhou or at Anyang County. Finally, this study suggested that the geographic distribution and diversity of non-Saccharomyces yeast populations on Cabernet Sauvignon grape berries were likely to be determined by a combination of grape varieties and environmental factors.


Asunto(s)
Biodiversidad , Frutas , Vitis , Levaduras , China , Granjas , Fermentación , Frutas/microbiología , Hanseniaspora/clasificación , Hanseniaspora/aislamiento & purificación , Pichia/clasificación , Pichia/aislamiento & purificación , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , Vitis/microbiología , Vino/microbiología , Levaduras/clasificación , Levaduras/aislamiento & purificación
7.
Syst Appl Microbiol ; 43(5): 126102, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32847794

RESUMEN

In order to identify rhizobia of Astragalus sinicus L. and estimate their geographic distribution in the Southwest China, native rhizobia nodulating A. sinicus were isolated and their genetic diversity were studied at 13 sites cultivated in four Chinese provinces. A total of 451 rhizobial isolates were trapped with A. sinicus plants from soils and classified into 8 different genotypes defined by PCR-based restriction fragment length polymorphism (RFLP) of 16S-23S rRNA intergenic spacer (IGS). Twenty-one representative strains were further identified into three defined Mesorhizobium species by phylogenetic analyses of 16S rRNA genes and housekeeping genes (glnII and atpD). M. jarvisii was dominant accounting for 76.3% of the total isolates, 22.8% of the isolates were identified as M. huakuii and five strains belonged to M. qingshengii. All representatives were assigned to the symbiovar astragali by sharing high nodC sequence similarities of more than 99%. Furthermore, the biogeography distribution of these rhizobial genotypes and species was mainly affected by contents of available phosphorus, available potassium, total salts and pH in soils. The most remarkable point was the identification of M. jarvisii as a widespread and predominant species of A. sinicus in southwest of China. These results revealed a novel geographic pattern of rhizobia associated with A. sinicus in China.


Asunto(s)
Planta del Astrágalo/microbiología , Mesorhizobium/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Planta del Astrágalo/fisiología , China , ADN Bacteriano/genética , Genes Bacterianos , Genes de ARNr , Variación Genética , Mesorhizobium/clasificación , Mesorhizobium/genética , Mesorhizobium/fisiología , Filogenia , Nodulación de la Raíz de la Planta , Polimorfismo de Longitud del Fragmento de Restricción , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Suelo/química , Microbiología del Suelo , Simbiosis/genética
8.
Syst Appl Microbiol ; 43(4): 126089, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32690192

RESUMEN

Diversity and taxonomic affiliation of chickpea rhizobia were investigated from Ningxia in north central China and their genomic relationships were compared with those from northwestern adjacent regions (Gansu and Xinjiang). Rhizobia were isolated from root-nodules after trapping by chickpea grown in soils from a single site of Ningxia and typed by IGS PCR-RFLP. Representative strains were phylogenetically analyzed on the basis of the 16S rRNA, housekeeping (atpD, recA and glnII) and symbiosis (nodC and nifH) genes. Genetic differentiation and gene flow were estimated among the chickpea microsymbionts from Ningxia, Gansu and Xinjiang. Fifty chickpea rhizobial isolates were obtained and identified as Mesorhizobium muleiense. Their symbiosis genes nodC and nifH were highly similar (98.4 to 100%) to those of other chickpea microsymbionts, except for one representative strain (NG24) that showed low nifH similarities with all the defined Mesorhizobium species. The rhizobial population from Ningxia was genetically similar to that from Gansu, but different from that in Xinjiang as shown by high chromosomal gene flow/low differentiation with the Gansu population but the reverse with the Xinjiang population. This reveals a biogeographic pattern with two main populations in M. muleiense, the Xinjiang population being chromosomally differentiated from Ningxia-Gansu one. M. muleiense was found as the sole main chickpea-nodulating rhizobial symbiont of Ningxia and it was also found in Gansu sharing alkaline-saline soils with Ningxia. Introduction of chickpea in recently cultivated areas in China seems to select from alkaline-saline soils of M. muleiense that acquired symbiotic genes from symbiovar ciceri.


Asunto(s)
Cicer/microbiología , Mesorhizobium/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , China , ADN Bacteriano/genética , Flujo Génico , Genes Bacterianos/genética , Genes Esenciales/genética , Variación Genética , Genoma Bacteriano/genética , Genotipo , Mesorhizobium/clasificación , Mesorhizobium/aislamiento & purificación , Mesorhizobium/fisiología , Filogenia , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA