Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2496: 159-177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35713864

RESUMEN

In the modern health care research, protein phosphorylation has gained an enormous attention from the researchers across the globe and requires automated approaches to process a huge volume of data on proteins and their modifications at the cellular level. The data generated at the cellular level is unique as well as arbitrary, and an accumulation of massive volume of information is inevitable. Biological research has revealed that a huge array of cellular communication aided by protein phosphorylation and other similar mechanisms imply different and diverse meanings. This led to a collection of huge volume of data to understand the biological functions of human evolution, especially for combating diseases in a better way. Text mining, an automated approach to mine the information from an unstructured data, finds its application in extracting protein phosphorylation information from the biomedical literature databases such as PubMed. This chapter outlines a recent text mining protocol that applies natural language parsing (NLP) for named entity recognition and text processing, and support vector machines (SVM), a machine learning algorithm for classifying the processed text related human protein phosphorylation. We discuss on evaluating the text mining system which is the outcome of the protocol on three corpora, namely, human Protein Phosphorylation (hPP) corpus, Integrated Protein Literature Information and Knowledge corpus (iProLink), and Phosphorylation Literature corpus (PLC). We also present a basic understanding on the chemistry and biology that drive the protein phosphorylation process in a human body. We believe that this basic understanding will be useful to advance the existing text mining systems for extracting protein phosphorylation information from PubMed.


Asunto(s)
Minería de Datos , Procesamiento de Lenguaje Natural , Minería de Datos/métodos , Humanos , Aprendizaje Automático , Fosforilación , Proteínas , PubMed
2.
Methods Mol Biol ; 2496: 17-39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35713857

RESUMEN

Genes and proteins form the basis of all cellular processes and ensure a smooth functioning of the human system. The diseases caused in humans can be either genetic in nature or may be caused due to external factors. Genetic diseases are mainly the result of any anomaly in gene/protein structure or function. This disruption interferes with the normal expression of cellular components. Against external factors, even though the immunogenicity of every individual protects them to a certain extent from infections, they are still susceptible to other disease-causing agents. Understanding the biological pathway/entities that could be targeted by specific drugs is an essential component of drug discovery. The traditional drug target discovery process is time-consuming and practically not feasible. A computational approach could provide speed and efficiency to the method. With the presence of vast biomedical literature, text mining also seems to be an obvious choice which could efficiently aid with other computational methods in identifying drug-gene targets. These could aid in initial stages of reviewing the disease components or can even aid parallel in extracting drug-disease-gene/protein relationships from literature. The present chapter aims at finding drug-gene interactions and how the information could be explored for drug interaction.


Asunto(s)
Minería de Datos , Descubrimiento de Drogas , Minería de Datos/métodos , Interacciones Farmacológicas , Humanos , PubMed
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA