Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35642306

RESUMEN

As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan). Among the three populations, placentas from ImHan showed a hyperactive gene expression pattern. Their increased activation demonstrates a hypoxic stress response similar to sea level individuals experiencing hypoxic conditions. Unlike ImHan, Tibetan placentas were characterized by the significant up-regulation of placenta-specific genes, and the activation of autophagy and the tricarboxylic acid (TCA) cycle. Certain conserved hypoxia response functions, including the antioxidant system and angiogenesis, were activated in both ImHan and Tibetans, but mediated by different genes. The coherence of specific transcriptome features linked to possible genetic contribution was observed in Tibetans. Furthermore, we identified a novel Tibetan-specific EPAS1 isoform with a partial deletion at exon six, which may be involved in the adaption to hypoxia through the EPAS1-centred gene network in the placenta. Overall, our results show that the placenta grants successful pregnancies in Tibetans by strengthening the natural functions of the placenta itself. On the other hand, the placenta of ImHan was in an inhabiting time-dependent acclimatization process representing a common hypoxic stress response pattern.


Asunto(s)
Altitud , Transcriptoma , Aclimatación/genética , Femenino , Hemoglobinas/genética , Humanos , Hipoxia/metabolismo , Placenta/metabolismo , Embarazo , Reproducción , Tibet
2.
Macromol Rapid Commun ; 44(1): e2200299, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35656715

RESUMEN

In this work, a multiblock polyurethane (PU-Im) consisting of polyether and polyurethane segments with imidazole dangling groups is demonstrated, which can further coordinate with Ni2+ . By controlling the ligand content and metal-ligand stoichiometry ratio, PU-Im-Ni complex with vastly different mechanical behavior can be obtained. The elastomer PU-2Im-Ni has extraordinary mechanical strength (61MPa) and excellent toughness (420 MJ m-3 ), but the plastic PU-4Im-Ni exhibits super-high modulus (515 MPa), strength (63 MPa), and good stretchability (≈800%). The metal-ligand interaction between polyurethane segments and Ni2+ is proved by Raman spectra, dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). The polyurethane segments domain formed by microphase separation is dynamically "locked" by Ni2+ coordinated with imidazole, revealing a local phase-lock effect. The phase-locking hard domains reinforce the PU-Im-Ni complex and maintain stimuli-responsive self-healing ability, while the free polyether segments provide stretchability. Primarily, the water environment with plasticization effect serves as an effective and eco-friendly self-healing approach for PU-Im-Ni plastic. With the excellent mechanical performance, thermal/aquatic self-healing ability, and unique damping properties, the PU-Im-Ni complexes show potential applications in self-healing engineering plastic and cushion protection fields.


Asunto(s)
Plásticos , Poliuretanos , Ligandos , Elastómeros , Microscopía Electrónica de Transmisión
3.
Hematol Oncol ; 40(3): 475-478, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35613340

RESUMEN

To investigate germline predisposition in lymphoma, we performed whole-exome sequencing and discovered a novel variant (c.817-1G>T) in programmed cell death 1 ligand 2 (PD-L2) in a family with early-onset lymphomas and other cancers. The variant was present in the proband with follicular lymphoma and his son with Hodgkin's lymphoma. It was in the terminal splice acceptor site of PD-L2 and embedded in a putative enhancer of Janus kinase 2 (JAK2) and programmed cell death 1 ligand (PD-L1). We also found that gene expression of PD-L2, PD-L1, and JAK2 was significantly increased. Using 3' rapid amplification of cDNA ends (3' RACE), we detected an abnormal PD-L2 transcript in the son. Thus, the c.817-1G>T variant may result in the elevated PD-L2 expression due to the abnormal PD-L2 transcript and the elevated PD-L1 and JAK2 expression due to increased enhancer activity of PD-L1 and JAK2. The PD-L2 novel variant likely underlies the genetic etiology of the lymphomas in the family. As PD-L2 plays critical roles in tumor immunity, identification of PD-L2 as a germline predisposition gene may inform personalized immunotherapy in lymphoma patients.


Asunto(s)
Antígeno B7-H1 , Linfoma , Proteína 2 Ligando de Muerte Celular Programada 1 , Antígeno B7-H1/genética , Exoma , Predisposición Genética a la Enfermedad , Humanos , Ligandos , Linfoma/genética , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Secuenciación del Exoma
4.
Cells ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391911

RESUMEN

Accurate prognostic markers are essential for guiding effective lung cancer treatment strategies. The level of 5-hydroxymethylcytosine (5hmC) in tissue is independently associated with overall survival (OS) in lung cancer patients. We explored the prognostic value of cell-free DNA (cfDNA) 5hmC through genome-wide analysis of 5hmC in plasma samples from 97 lung cancer patients. In both training and validation sets, we discovered a cfDNA 5hmC signature significantly associated with OS in lung cancer patients. We built a 5hmC prognostic model and calculated the weighted predictive scores (wp-score) for each sample. Low wp-scores were significantly associated with longer OS compared to high wp-scores in the training [median 22.9 versus 8.2 months; p = 1.30 × 10-10; hazard ratio (HR) 0.04; 95% confidence interval (CI), 0.00-0.16] and validation (median 18.8 versus 5.2 months; p = 0.00059; HR 0.22; 95% CI: 0.09-0.57) sets. The 5hmC signature independently predicted prognosis and outperformed age, sex, smoking, and TNM stage for predicting lung cancer outcomes. Our findings reveal critical genes and signaling pathways with aberrant 5hmC levels, enhancing our understanding of lung cancer pathophysiology. The study underscores the potential of cfDNA 5hmC as a superior prognostic tool for guiding more personalized therapeutic strategies for lung cancer patients.


Asunto(s)
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Ácidos Nucleicos Libres de Células/genética , 5-Metilcitosina/metabolismo
5.
Cells ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667328

RESUMEN

Immune checkpoint inhibitors (ICIs) drastically improve therapeutic outcomes for lung cancer, but accurately predicting individual patient responses to ICIs remains a challenge. We performed the genome-wide profiling of 5-hydroxymethylcytosine (5hmC) in 85 plasma cell-free DNA (cfDNA) samples from lung cancer patients and developed a 5hmC signature that was significantly associated with progression-free survival (PFS). We built a 5hmC predictive model to quantify the 5hmC level and validated the model in the validation, test, and control sets. Low weighted predictive scores (wp-scores) were significantly associated with a longer PFS compared to high wp-scores in the validation [median 7.6 versus 1.8 months; p = 0.0012; hazard ratio (HR) 0.12; 95% confidence interval (CI), 0.03-0.54] and test (median 14.9 versus 3.3 months; p = 0.00074; HR 0.10; 95% CI, 0.02-0.50) sets. Objective response rates in patients with a low or high wp-score were 75.0% (95% CI, 42.8-94.5%) versus 0.0% (95% CI, 0.0-60.2%) in the validation set (p = 0.019) and 80.0% (95% CI, 44.4-97.5%) versus 0.0% (95% CI, 0.0-36.9%) in the test set (p = 0.0011). The wp-scores were also significantly associated with PFS in patients receiving single-agent ICI treatment (p < 0.05). In addition, the 5hmC predictive signature demonstrated superior predictive capability to tumor programmed death-ligand 1 and specificity to ICI treatment response prediction. Moreover, we identified novel 5hmC-associated genes and signaling pathways integral to ICI treatment response in lung cancer. This study provides proof-of-concept evidence that the cfDNA 5hmC signature is a robust biomarker for predicting ICI treatment response in lung cancer.


Asunto(s)
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Libres de Células , Inmunoterapia , Neoplasias Pulmonares , Humanos , 5-Metilcitosina/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Masculino , Femenino , Inmunoterapia/métodos , Anciano , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Resultado del Tratamiento
6.
Clin Epigenetics ; 15(1): 134, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620919

RESUMEN

Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML). However, MRD cannot be detected in many patients using current methods. We developed a highly sensitive 5-hydroxymethylcytosine (5hmC) signature in cell-free DNA by analyzing 115 AML patients and 86 controls. The 5hmC method detected MRD in 20 of 29 patients with negative MRD by multiparameter flow cytometry and 11 of 14 patients with negative MRD by molecular methods. MRD detection by the 5hmC method was significantly associated with relapse-free survival. This novel method can be used in most AML patients and may significantly impact AML patient management.


Asunto(s)
Ácidos Nucleicos Libres de Células , Leucemia Mieloide Aguda , Humanos , Metilación de ADN , 5-Metilcitosina , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética
7.
Genes (Basel) ; 14(6)2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37372359

RESUMEN

Epigenetic abnormality is a hallmark of acute myeloid leukemia (AML), and aberrant 5-hydroxymethylcytosine (5hmC) levels are commonly observed in AML patients. As epigenetic subgroups of AML correlate with different clinical outcomes, we investigated whether plasma cell-free DNA (cfDNA) 5hmC could categorize AML patients into subtypes. We profiled the genome-wide landscape of 5hmC in plasma cfDNA from 54 AML patients. Using an unbiased clustering approach, we found that 5hmC levels in genomic regions with a histone mark H3K4me3 classified AML samples into three distinct clusters that were significantly associated with leukemia burden and survival. Cluster 3 showed the highest leukemia burden, the shortest overall survival of patients, and the lowest 5hmC levels in the TET2 promoter. 5hmC levels in the TET2 promoter could represent TET2 activity resulting from mutations in DNA demethylation genes and other factors. The novel genes and key signaling pathways associated with aberrant 5hmC patterns could add to our understanding of DNA hydroxymethylation and highlight the potential therapeutic targets in AML. Our results identify a novel 5hmC-based AML classification system and further underscore cfDNA 5hmC as a highly sensitive marker for AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas , Humanos , Proteínas Proto-Oncogénicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , 5-Metilcitosina/metabolismo
8.
Sci Rep ; 12(1): 12410, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859008

RESUMEN

Aberrant changes in 5-hydroxymethylcytosine (5hmC) are a unique epigenetic feature in many cancers including acute myeloid leukemia (AML). However, genome-wide analysis of 5hmC in plasma cell-free DNA (cfDNA) remains unexploited in AML patients. We used a highly sensitive and robust nano-5hmC-Seal technology and profiled genome-wide 5hmC distribution in 239 plasma cfDNA samples from 103 AML patients and 81 non-cancer controls. We developed a 5hmC diagnostic model that precisely differentiates AML patients from controls with high sensitivity and specificity. We also developed a 5hmC prognostic model that accurately predicts prognosis in AML patients. High weighted prognostic scores (wp-scores) in AML patients were significantly associated with adverse overall survival (OS) in both training (P = 3.31e-05) and validation (P = 0.000464) sets. The wp-score was also significantly associated with genetic risk stratification and displayed dynamic changes with varied disease burden. Moreover, we found that high wp-scores in a single gene, BMS1 and GEMIN5 predicted OS in AML patients in both the training set (P = 0.023 and 0.031, respectively) and validation set (P = 9.66e-05 and 0.011, respectively). Lastly, our study demonstrated the genome-wide landscape of DNA hydroxymethylation in AML and revealed critical genes and pathways related to AML diagnosis and prognosis. Our data reveal plasma cfDNA 5hmC signatures as sensitive and accurate markers for AML diagnosis and prognosis. Plasma cfDNA 5hmC analysis will be an effective and minimally invasive tool for AML management.


Asunto(s)
Ácidos Nucleicos Libres de Células , Leucemia Mieloide Aguda , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Epigenómica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética
9.
Sci China Life Sci ; 61(1): 68-78, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28795375

RESUMEN

Humans have been exposed to many environmental challenges since their evolutionary origins in Africa and subsequent migrations to the rest of the world. A severe environmental challenge to human migrants was hypoxia caused by low barometric oxygen pressure at high altitudes. Several genome-wide scans have elucidated the genetic basis of human high-altitude adaptations. However, the dearth of functional variant information has led to the successful association of only a few candidate genes. In the present study, we employed a candidate gene approach and re-sequenced the EDAR locus in 45 Tibetan individuals to identify mutations involved in hypoxia adaptation. We identified 10 and five quantitative trait-associated mutations for oxygen saturation (SaO2) and blood platelet count, respectively, at the EDAR locus. Among these, rs10865026 and rs3749110 (associated with SaO2 and platelet count, respectively) were identified as functional candidate targets. These data demonstrate that EDAR has undergone natural selection in recent human history and indicate an important role of EDAR variants in Tibetan high-altitude adaptations.


Asunto(s)
Aclimatación/genética , Altitud , Receptor Edar/genética , Evolución Molecular , Hipoxia/genética , Polimorfismo de Nucleótido Simple , Estudios de Asociación Genética , Genética de Población , Humanos , Hipoxia/sangre , Oxígeno/sangre , Fenotipo , Recuento de Plaquetas , Selección Genética , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA