Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 22(12): e52805, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34580996

RESUMEN

Bacteria use a variety of mechanisms, such as two-component regulatory systems (TCSs), to rapidly sense and respond to distinct conditions and signals in their host organisms. For example, a type III secretion system (T3SS) is a key determinant of the virulence of the model plant pathogen Pseudomonas syringae and contains the TCS RhpRS as a key regulator. However, the plant-derived compound targeting RhpRS remains unknown. Here, we report that RhpRS directly interacts with polyphenols and responds by switching off P. syringae T3SS via crosstalk with alternative histidine kinases. We identify three natural polyphenols that induce the expression of the rhpRS operon in an RhpS-dependent manner. The presence of these three specific polyphenols inhibits the phosphatase activity of RhpS, thus suppressing T3SS activation in T3SS-inducing conditions. The Pro40 residue of RhpS is essential to respond to these polyphenols. In addition, three non-cognate histidine kinases cooperatively phosphorylate RhpR and antagonize the rhpS mutant phenotype. This work illustrates that plant polyphenols can directly target P. syringae RhpRS, which results in bacterial virulence being switched off via a phosphorylation-related crosstalk.


Asunto(s)
Polifenoles , Pseudomonas syringae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/microbiología , Polifenoles/metabolismo , Polifenoles/farmacología , Pseudomonas syringae/metabolismo , Virulencia
2.
Environ Microbiol ; 22(7): 2968-2988, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32410332

RESUMEN

Lon, a member of the AAA+ protease family, plays vital roles in Type III secretion systems (T3SS), agglutination and colony shape in the model plant pathogen Pseudomonas syringae. Lon also functions as a transcriptional regulator in other bacterial species such as Escherichia coli and Brevibacillus thermoruber. To reveal the molecular mechanisms of Lon as a dual-function protein in P. syringae, we studied Lon-regulated genes by using RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and liquid chromatography-tandem mass spectrometry. As a transcriptional regulator, Lon directly regulated a group of genes (PSPPH_4788, gacA, fur, gntR, clpS, lon and glyA) and consequently regulated their functions, such as 1-dodecanol oxidation activity, motility, pyoverdine production, glucokinase activity, N-end rule pathway, lon expression and serine hydroxymethyltransferase activity. Mass spectrometry results revealed that the expression levels of five T3SS proteins (such as HrcV, HrpW1) were higher in the ∆lon strain than the wild-type (WT) strain in KB. In MM, 12 metabolic proteins (such as AcdS and NuoI) showed lower levels in the ∆lon strain than the WT strain. Taken together, these data demonstrate that the dual-function protein Lon sophisticatedly regulates virulence and metabolism in P. syringae.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteasa La/metabolismo , Pseudomonas syringae/patogenicidad , Proteínas Bacterianas/genética , ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Proteasa La/genética , Pseudomonas syringae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Virulencia/genética
3.
Environ Microbiol ; 21(12): 4465-4477, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408268

RESUMEN

Pseudomonas syringae is a model phytopathogenic bacterium that uses the type III secretion system (T3SS) to cause lethal diseases in staple crops and thus presents a threat to food security worldwide. Great progress has been made in delineating the biochemical mechanisms and cellular targets of T3SS effectors, but less is known about the signalling pathways and molecular mechanisms of T3SS regulators. In recent years, thanks to the popularity and power of genome-wide mutant screening and high-throughput sequencing, new regulatory proteins (such as RhpR, AefR, AlgU and CvsR) and proteases (such as Lon and RhpP) have been identified as T3SS regulators in P. syringae pathovars. The detailed mechanisms of previously illustrated regulators (such as HrpRS, HrpL and HrpGV) have also been further studied. Notably, the two-component system RhpRS has been determined to play key roles in the modulation of T3SS via direct regulation of hrpRS and other virulence-related pathways by sensing changes in environmental signals. In addition, secondary messengers (such as c-di-GMP and ppGpp) have been shown to fine-tune the activity of T3SS. Overall, these studies have suggested the existence of a highly intricate regulatory network for T3SS, which controls the pathogenicity of P. syringae. This short review summarizes studies of P. syringae T3SS regulation and the known mechanisms of key regulators.


Asunto(s)
Pseudomonas syringae/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas syringae/patogenicidad , Factores de Transcripción/metabolismo , Virulencia
4.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30850427

RESUMEN

Although the ubiquitous bacterial secondary messenger cyclic diguanylate (c-di-GMP) has important cellular functions in a wide range of bacteria, its function in the model plant pathogen Pseudomonas syringae remains largely elusive. To this end, we overexpressed Escherichia coli diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) in P. syringae, resulting in high and low in vivo levels of c-di-GMP, respectively. Via genome-wide RNA sequencing of these two strains, we found that c-di-GMP regulates (i) fliN, fliE, and flhA, which are associated with flagellar assembly; (ii) alg8 and alg44, which are related to the exopolysaccharide biosynthesis pathway; (iii) pvdE, pvdP, and pvsA, which are associated with the siderophore biosynthesis pathway; and (iv) sodA, which encodes a superoxide dismutase. In particular, we identified three promoters that are sensitive to elevated levels of c-di-GMP and inserted them into luciferase-based reporters that respond effectively to the c-di-GMP levels in P. syringae; these promoters could be useful in the measurement of in vivo levels of c-di-GMP in real time. Further phenotypic assays validated the RNA sequencing (RNA-seq) results and confirmed the effect on c-di-GMP-associated pathways, such as repressing the type III secretion system (T3SS) and motility while inducing biofilm production, siderophore production, and oxidative stress resistance. Taken together, these results demonstrate that c-di-GMP regulates the virulence and stress response in P. syringae, which suggests that tuning its level could be a new strategy to protect plants from attacks by this pathogen.IMPORTANCE The present work comprehensively analyzed the transcriptome and phenotypes that were regulated by c-di-GMP in P. syringae Given that the majority of diguanylate cyclases and phosphodiesterases have not been characterized in P. syringae, this work provided a very useful database for the future study on regulatory mechanism (especially its relationship with T3SS) of c-di-GMP in P. syringae In particular, we identified three promoters that were sensitive to elevated c-di-GMP levels and inserted them into luciferase-based reporters that effectively respond to intracellular levels of c-di-GMP in P. syringae, which could be used as an economic and efficient way to measure relative c-di-GMP levels in vivo in the future.


Asunto(s)
GMP Cíclico/análogos & derivados , Pleiotropía Genética , Pseudomonas syringae/genética , GMP Cíclico/genética , GMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Microorganismos Modificados Genéticamente/patogenicidad , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad , Virulencia/genética
5.
J Bacteriol ; 200(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29760208

RESUMEN

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen of humans, particularly those with cystic fibrosis. As a global regulator, RpoN controls a group of virulence-related factors and quorum-sensing (QS) genes in P. aeruginosa To gain further insights into the direct targets of RpoN in vivo, the present study focused on identifying the direct targets of RpoN regulation in QS and the type VI secretion system (T6SS). We performed chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) that identified 1,068 binding sites of RpoN, mostly including metabolic genes, a group of genes in QS (lasI, rhlI, and pqsR) and the T6SS (hcpA and hcpB). The direct targets of RpoN have been verified by electrophoretic mobility shifts assays (EMSA), lux reporter assay, reverse transcription-quantitative PCR, and phenotypic detection. The ΔrpoN::Tc mutant resulted in the reduced production of pyocyanin, motility, and proteolytic activity. However, the production of rhamnolipids and biofilm formation were higher in the ΔrpoN::Tc mutant than in the wild type. In summary, the results indicated that RpoN had direct and profound effects on QS and the T6SS.IMPORTANCE As a global regulator, RpoN controls a wide range of biological pathways, including virulence in P. aeruginosa PAO1. This work shows that RpoN plays critical and global roles in the regulation of bacterial pathogenicity and fitness. ChIP-seq provided a useful database to characterize additional functions and targets of RpoN in the future. The functional characterization of RpoN-mediated regulation will improve the current understanding of the regulatory network of quorum sensing and virulence in P. aeruginosa and other bacteria.


Asunto(s)
Pseudomonas aeruginosa/genética , Percepción de Quorum , ARN Polimerasa Sigma 54/genética , Sistemas de Secreción Tipo VI/genética , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Virulencia/genética
6.
Mol Plant Microbe Interact ; 31(12): 1232-1243, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29717915

RESUMEN

The type III secretion system (T3SS) is the main machinery for Pseudomonas savastanoi and other gram-negative bacteria to invade plant cells. HrpR and HrpS form a hetero-hexamer, which activates the expression of HrpL, which induces all T3SS genes by binding to a 'hrp box' in promoters. However, the individual molecular mechanism of HrpR or HrpS has not been fully understood. Through chromatin immunoprecipitation coupled to high-throughput DNA sequencing, we found that HrpR, HrpS, and HrpL had four, 47, and 31 targets on the genome, respectively. HrpS directly bound to the promoter regions of a group of T3SS genes and non-T3SS genes. HrpS independently regulated these genes in a hrpL deletion strain. Additionally, a HrpS-binding motif (GTGCCAAA) was identified, which was verified by electrophoretic mobility shift assay and lux-reporter assay. HrpS also regulated motility and biofilm formation in P. savastanoi. The present study strongly suggests that HrpS alone can work as a global regulator on both T3SS and non-T3SS genes in P. savastanoi. [Formula: see text] Copyright © 2018 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .


Asunto(s)
Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Pseudomonas/genética , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo III/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN , Ensayo de Cambio de Movilidad Electroforética , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Biológicos , Motivos de Nucleótidos , Mutación Puntual , Regiones Promotoras Genéticas/genética , Pseudomonas/metabolismo , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Sistemas de Secreción Tipo III/metabolismo
7.
J Food Sci Technol ; 55(3): 1175-1184, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29487460

RESUMEN

The applicability of near-infrared (NIR) and mid-infrared (MIR) spectroscopy combined with chemometrics was explored in this study to develop rapid, low-cost and non-destructive spectroscopic methods for classification and quantification of aflatoxins in brown rice. A total of 132 brown rice samples within the aflatoxin concentration range of 0-2435.8 µg/kg were prepared by artificially inoculated with A. flavus and A. parasiticus strains of fungus. For the classification of samples at varying levels of aflatoxin B1, the linear discriminant analysis model obtained correct classification rate of 96.9 and 90.6% for NIR and MIR spectroscopy, respectively. For the simultaneous determination of aflatoxins B1, B2, G1, G2 and the total aflatoxins, partial least squares regression also showed good predictive accuracy for both NIR (rv  = 0.936-0.973, RPD = 2.5-4.0) and MIR spectroscopy (rv  = 0.922-0.970, RPD = 2.5-4.0). The overall results indicated that the two spectroscopic techniques offered the feasibility to be used as alternative tools for rapid detection of various aflatoxin contaminations in grain.

8.
Mol Plant Microbe Interact ; 29(10): 807-814, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27657922

RESUMEN

Pseudomonas syringae depends on the type III secretion system (T3SS) to directly translocate effectors into host cells. Previously, we reported a nonpathogenic rhpS mutant, suggesting that the two-component transduction system rhpRS is an important regulator of T3SS in P. syringae. rhpRS regulates itself and a variety of downstream genes under an inverted repeat element promoter in a phosphorylation-dependent manner. Here, we identify lon as a suppressor of the rhpS mutant through transposon screening. A lon/rhpS double mutant restored the phenotypes of the rhpS mutant. The expression level of lon was higher in rhpS and other T3SS-deficient mutants than the wild-type strain, suggesting a negative feedback mechanism between lon and T3SS genes. lon was also induced by a novel T3SS inhibitor, acetate, which substantially compromises the activation of T3SS genes in minimal medium and bacterial growth in host plants.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/microbiología , Proteasa La/metabolismo , Pseudomonas syringae/genética , Solanum lycopersicum/microbiología , Sistemas de Secreción Tipo III/metabolismo , Acetatos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mapeo Cromosómico , Modelos Biológicos , Mutagénesis Insercional , Fenotipo , Fosforilación , Regiones Promotoras Genéticas/genética , Proteasa La/genética , Sistemas de Secreción Tipo III/antagonistas & inhibidores , Sistemas de Secreción Tipo III/genética
9.
Sensors (Basel) ; 15(10): 26726-42, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26506350

RESUMEN

An electronic nose (e-nose) was used to characterize sesame oils processed by three different methods (hot-pressed, cold-pressed, and refined), as well as blends of the sesame oils and soybean oil. Seven classification and prediction methods, namely PCA, LDA, PLS, KNN, SVM, LASSO and RF, were used to analyze the e-nose data. The classification accuracy and MAUC were employed to evaluate the performance of these methods. The results indicated that sesame oils processed with different methods resulted in different sensor responses, with cold-pressed sesame oil producing the strongest sensor signals, followed by the hot-pressed sesame oil. The blends of pressed sesame oils with refined sesame oil were more difficult to be distinguished than the blends of pressed sesame oils and refined soybean oil. LDA, KNN, and SVM outperformed the other classification methods in distinguishing sesame oil blends. KNN, LASSO, PLS, and SVM (with linear kernel), and RF models could adequately predict the adulteration level (% of added soybean oil) in the sesame oil blends. Among the prediction models, KNN with k = 1 and 2 yielded the best prediction results.


Asunto(s)
Nariz Electrónica/clasificación , Aceite de Sésamo/química , Aceite de Sésamo/clasificación , Procesamiento de Señales Asistido por Computador , Análisis Discriminante , Manipulación de Alimentos , Análisis de los Mínimos Cuadrados , Máquina de Vectores de Soporte
10.
Bull Environ Contam Toxicol ; 95(4): 507-12, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26160504

RESUMEN

Metal concentration in marine sediments is influenced by sedimentation rate. In this study, the metal concentration in sediments of Bohai Bay, China, was adjusted by sedimentation rate, which was derived from the radionuclide dating method. The results showed that the sedimentation rate of Bohai Bay sediments increased from 0.3 to 0.55 g/a over time, especially in the last 30 years since the economic reform in China. The sequence of metal concentrations (mg/kg) is: Cr(97.41) > Zn(73.14) > Cu(20.59) > Pb(16.42) > Cd(0.49). Through the adjustment, the change of metal concentration in sediment cores increased obviously from bottom to surface sediments. It indicated that the increasing sedimentation rate of Bohai Bay in recent years diluted the metal concentration in the sediment.


Asunto(s)
Bahías/química , Sedimentos Geológicos/química , Metales Pesados/análisis , China , Monitoreo del Ambiente , Metales Pesados/química , Factores de Tiempo , Contaminantes Químicos del Agua/análisis
11.
J Epidemiol Glob Health ; 14(2): 462-469, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38372894

RESUMEN

BACKGROUND: Poor sleep quality is a global public health concern. This study aimed to identify the risk factors for sleep disorders and clarify their causal effects. METHODS: Data were obtained from the National Health and Nutrition Examination Survey (NHANES) and Mendelian randomization (MR)-Base databases. Baseline characteristics of individuals with and without sleep disorders were compared. A multivariate logistic regression analysis was performed to calculate the effects of each variable on sleep disorders. Causal effects of blood lead levels and hypertension on sleep disorders were assessed using MR analysis. RESULTS: In total, 3660 individuals were enrolled in the study. The prevalence of self-reported sleep disorders was 26.21%. Serum lead level, serum mercury level, serum retinol level, prevalence of hypertension, and daily vigorous work duration were significantly higher for those in the sleep disorders group than the control group. After adjusting for various covariates, the effects of serum lead and hypertension on sleep disorders were stable from logistic regression models 1-4. MR analysis showed that blood lead levels were causally related to the risk of sleep disorders (odds ratio (OR) = 1.09, 95% confidence interval (CI) 1.01-1.17, P = 0.030). There was no causal link between elevated blood pressure and sleep disorders (OR = 0.99, 95% CI 0.94-1.04, P = 0.757). Goodness-of-fit tests and sensitivity analyses were used to verify the reliability of the results. CONCLUSIONS: Blood lead is positively and causally associated with an increased risk of sleep disorders. These findings provide a novel perspective regarding sleep protection. Taking effective measures to reduce lead exposure may significantly improve sleep health.


Asunto(s)
Plomo , Análisis de la Aleatorización Mendeliana , Encuestas Nutricionales , Trastornos del Sueño-Vigilia , Humanos , Plomo/sangre , Masculino , Femenino , Adulto , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/sangre , Persona de Mediana Edad , Factores de Riesgo , Hipertensión/epidemiología , Hipertensión/sangre , Prevalencia
12.
Mol Plant Pathol ; 25(1): e13399, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921929

RESUMEN

Pseudomonas syringae pv. actinidiae (Psa), the bacterium that causes kiwifruit bacterial canker, is a common field occurrence that is difficult to control globally. Currently, exploring the resources for efficient biocontrol bacteria is a hot spot in the field. The common strategy for isolating biocontrol bacteria is to directly isolate biocontrol bacteria that can secrete diffusible antibacterial substances, most of which are members of Bacillus, Pseudomonas and Streptomycetaceae, from disease samples or soil. Here, we report a new approach by adapting the typical isolation methods of kiwifruit canker disease to identify efficient biocontrol bacteria from the branch microbiome. Using this unique approach, we isolated a group of kiwifruit biocontrol agents (KBAs) from the branch microbiome of Psa-resistant varieties. Thirteen of these showed no antagonistic activity in vitro, which depends on the secretion of antibacterial compounds. However, they exhibited antibacterial activity via cell-to-cell contacts mimicked by co-culture on agar plates. Through biocontrol tests on plants, two isolates, KBA13 and KBA19, demonstrated their effectiveness by protecting kiwifruit branches from Psa infection. Using KBA19, identified as Pantoea endophytica, as a representative, we found that this bacterium uses the type VI secretion system (T6SS) as the main contact-dependent antibacterial weapon that acts via translocating toxic effector proteins into Psa cells to induce cell death, and that this capacity expressed by KBA19 is common to various Psa strains from different countries. Our findings highlight a new strategy to identify efficient biocontrol agents that use the T6SS to function in an antibacterial metabolite-independent manner to control wood diseases.


Asunto(s)
Actinidia , Pseudomonas syringae , Pseudomonas syringae/fisiología , Enfermedades de las Plantas/microbiología , Actinidia/microbiología , Antibacterianos , Bacterias
13.
Pest Manag Sci ; 80(8): 3997-4005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527976

RESUMEN

BACKGROUND: Canonical biocontrol bacteria were considered to inhibit pathogenic bacteria mainly by secreting antibiotic metabolites or enzymes. Recent studies revealed that some biocontrol bacteria can inhibit pathogenic bacteria through contact-dependent killing (CDK) mediated by contact-dependent secretion systems. The CDK was independent of antibiotic metabolites and often ignored in normal biocontrol activity assay. RESULTS: In this study, we aimed to use a pathogen enrichment strategy to isolate non-canonical bacteria with CDK ability. Rhizosphere soil samples from Chinese cabbage showing soft rot symptom were collected and Pectobacterium carotovorum subsp. carotovorum (Pcc), the pathogen of cabbage soft rot, were added into these samples to enrich bacteria which attached on Pcc cells. By co-culture with Pcc, four bacteria strains (named as PcE1, PcE8, PcE12 and PcE13) showing antibacterial activity were isolated from Chinese cabbage rhizosphere. These four bacteria strains showed CDK abilities to different pathogenic bacteria of horticultural plants. Among them, PcE1 was identified as Chryseobacterium cucumeris. Genome sequencing showed that PcE1 genome encoded a type VI secretion system (T6SS) gene cluster. By heterologous expression, four predicted T6SS effectors of PcE1 showed antibacterial activity to Escherichia coli. CONCLUSION: Overall, this study isolated four bacteria strains with CDK activity to various horticultural plant pathogens, and revealed possible involvement of T6SS of Chryseobacterium cucumeris in antibacterial activity. These results provide valuable insight for potential application of CDK activity in biocontrol bacteria. © 2024 Society of Chemical Industry.


Asunto(s)
Antibiosis , Brassica , Pectobacterium carotovorum , Brassica/microbiología , Pectobacterium carotovorum/genética , Microbiología del Suelo , Rizosfera , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
14.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38959853

RESUMEN

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.


Asunto(s)
Proteínas Bacterianas , Lysobacter , Pseudomonas , Sistemas de Secreción Tipo IV , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lysobacter/genética , Lysobacter/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Regulación Bacteriana de la Expresión Génica , Oligopéptidos/metabolismo , Oligopéptidos/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor sigma/genética , Factor sigma/metabolismo
15.
Methods Mol Biol ; 2646: 249-254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36842119

RESUMEN

Bacterial twitching motility is a peculiar way of adherence and surface translocation on moist solid or semisolid surfaces. Although the twitching motility has been detected in various flagellated bacteria, such as Pseudomonas aeruginosa, it has been rarely detected in flagella-less bacteria like Lysobacter enzymogenes, a natural predator of filamentous fungi. Here, by using a strain OH11 of L. enzymogenes as a model system, we describe a convenient method for observing the twitching motility, with fewer steps and better repetition than conventional methods. This new method provides important technical support for the motile study of Lysobacter.


Asunto(s)
Proteínas Bacterianas , Lysobacter
16.
Genes Dis ; 10(5): 2049-2063, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37492705

RESUMEN

In Pseudomonas aeruginosa (P. aeruginosa), transcription factors (TFs) are important mediators in the genetic regulation of adaptability and pathogenicity to respond to multiple environmental stresses and host defences. The P. aeruginosa genome harbours 371 putative TFs; of these, about 70 have been shown to regulate virulence-associated phenotypes by binding to the promoters of their target genes. Over the past three decades, several techniques have been applied to identify TF binding sites on the P. aeruginosa genome, and an atlas of TF binding patterns has been mapped. The virulence-associated regulons of TFs show complex crosstalk in P. aeruginosa's regulatory network. In this review, we summarise the recent literature on TF regulatory networks involved in the quorum-sensing system, biofilm formation, pyocyanin synthesis, motility, the type III secretion system, the type VI secretion system, and oxidative stress responses. We discuss future perspectives that could provide insights and targets for preventing clinical infections caused by P. aeruginosa based on the global regulatory network of transcriptional regulators.

17.
Microbiol Spectr ; 11(1): e0343722, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475880

RESUMEN

Quorum sensing (QS) is a well-known chemical signaling system responsible for intercellular communication that is widespread in bacteria. Acyl-homoserine lactone (AHL) is the most-studied QS signal. Previously, bacterially encoded AHL-degrading enzymes were considered to be canonical quorum-quenching proteins that have been widely used to control pathogenic infections. Here, we report a novel platform that enabled the efficient discovery of noncanonical AHL quorum-quenching proteins. This platform initially asked bacteriologists to carry out comparative genomic analyses between phylogenetically related AHL-producing and non-AHL-producing members to identify genes that are conservatively shared by non-AHL-producing members but absent in AHL-producing species. These candidate genes were then introduced into recombinant AHL-producing E. coli to screen for target proteins with the ability to block AHL production. Via this platform, we found that non-AHL-producing Lysobacter containing numerous environmentally ubiquitous members encoded a conserved glycosyltransferase-like protein Le4759, which was experimentally shown to be a noncanonical AHL-quenching protein. Le4759 could not directly degrade exogenous AHL but rather recognized and altered the activities of multiple AHL synthases through protein-protein interactions. This versatile capability enabled Le4759 to block specific AHL synthase such as CarI from Pectobacterium carotovorum to reduce its protein abundance to suppress AHL synthesis, thereby impairing bacterial infection. Thus, this study provided bacteriologists with a unique platform to discover noncanonical quorum-quenching proteins that could be developed as promising next-generation drug candidates to overcome emerging bacterial antibiotic resistance. IMPORTANCE Targeting and blocking bacterial quorum sensing (QS), the process known as quorum quenching (QQ) is an effective mean to control bacterial infection and overcome the emerging antibiotic resistance. Previously, diverse QS signal-degradation enzymes are identified as canonical QQ proteins. Here, we provided a novel and universal platform that enabled to discover previously unidentified noncanonical QQ proteins that were unable to degrade acyl-homoserine lactone (AHL) but could block AHL generation by recognizing multiple AHL synthases via direct protein-protein interactions. Our findings are believed to trigger broad interest for bacteriologists to identify potentially widely distributed noncanonical QQ proteins that have great potential for developing next-generation anti-infectious drugs.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Percepción de Quorum/genética , Acil-Butirolactonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
18.
Diabetol Metab Syndr ; 15(1): 228, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950319

RESUMEN

BACKGROUND: The comorbidity rate between type 2 diabetes mellitus (T2DM) and pulmonary tuberculosis (PTB) is high and imposes enormous strains on healthcare systems. However, whether T2DM is causally associated with PTB is unknown owing to limited evidence from prospective studies. Consequently, the present study aimed to clarify the genetic causality between T2DM and PTB on the basis of Mendelian randomization (MR) analysis. METHODS: Genetic variants for T2DM and PTB were obtained from the IEU OpenGWAS project. The inverse variance weighted method was used as the main statistical analysis method and was supplemented with MR-Egger, weighted median, simple mode, and weighted mode methods. Heterogeneity was analyzed using Cochran's Q statistic. Horizontal pleiotropy was assessed using the MR-PRESSO global test and MR-Egger regression. Robustness of the results was verified using the leave-one-out method. RESULTS: A total of 152 independent single-nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs) to assess the genetic causality between T2DM and PTB. Patients with T2DM had a higher risk of PTB at the genetic level (odds ratio (OR) for MR-Egger was 1.550, OR for weighted median was 1.540, OR for inverse variance weighted was 1.191, OR for simple mode was 1.629, OR for weighted mode was 1.529). There was no horizontal pleiotropy or heterogeneity among IVs. The results were stable when removing the SNPs one by one. CONCLUSIONS: This is the first comprehensive MR analysis that revealed the genetic causality between T2DM and PTB in the East Asian population. The study provides convincing evidence that individuals with T2DM have a higher risk of developing PTB at the genetic level. This offers a significant basis for joint management of concurrent T2DM and PTB in clinical practice.

19.
Front Endocrinol (Lausanne) ; 14: 1308254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38234426

RESUMEN

Background: The relationship between weight change patterns and arthritis onset, specifically rheumatoid arthritis (RA) and osteoarthritis (OA), is unclear. We examined the association between weight changes from young adulthood to midlife and arthritis onset. Methods: Using data from NHANES 1999-2018, participants with self-reported arthritis were selected. Age at diagnosis determined arthritis onset. Weight change patterns were based on BMI at age 25 and 10 years before the survey. Patterns were categorized as stable non-obese, non-obese to obese, obese to non-obese, and stable obese. Cox regression models and restricted cubic spline (RCS) analysis were employed, calculating hazard ratios (HRs) and 95% confidence intervals (CIs) considering covariates. Results: Out of 20,859 participants (male 11,017, 52.82%), 4922 developed arthritis over a mean 8.66-year follow-up. Compared to stable non-obese individuals, the HRs for arthritis were 1.55 (95% CI=1.45 to 1.66, P < 0.0001) for non-obese to obese and 1.74 (95% CI=1.56 to 1.95, P < 0.0001) for stable obese. Those gaining 10-20 kg had a HR of 1.33 (95% CI=1.22 to 1.46, P < 0.0001), and gains >20 kg had a HR of 1.56 (95% CI=1.42 to 1.71, P < 0.0001), compared to stable weight (change within 2.5 kg). Identical results observed for OA and RA. RCS showed a nonlinear relationship between weight change and arthritis (all P < 0.01). Conclusions: Stable obesity and weight gain during adulthood increase arthritis risk. Maintaining a non-obese weight throughout adult years might reduce arthritis risk in later life.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Adulto , Humanos , Masculino , Adulto Joven , Factores de Riesgo , Estudios Retrospectivos , Encuestas Nutricionales , Artritis Reumatoide/complicaciones , Artritis Reumatoide/epidemiología , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/diagnóstico , Osteoartritis/epidemiología , Osteoartritis/etiología
20.
Front Plant Sci ; 14: 1116147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743479

RESUMEN

The Phytophthora pathogen causes enormous damage to important agricultural plants. This group of filamentous pathogens is phylogenetically distant from fungi, making them difficult to control by most chemical fungicides. Lysobacter enzymogenes OH11 (OH11) is a biocontrol bacterium that secretes HSAF (Heat-Stable Antifungal Factor) as a broad-spectrum antifungal weapon. Here, we showed that OH11 could also control a variety of plant Phytophthora diseases caused by three major oomycetes (P. sojae, P. capsici and P. infestans). We provided abundant evidence to prove that OH11 protected host plants from Phytophthora pathogen infection by inhibiting mycelial growth, digesting cysts, suppressing cyst germination, and eliciting plant immune responses. Interestingly, the former two processes required the presence of HSAF, while the latter two did not. This suggested that L. enzymogenes could prevent Phytophthora infection via multiple previously unknown mechanisms. Therefore, this study showed that L. enzymogenes could serve as a promising alternative resource for promoting plant resistance to multiple Phytophthora pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA