Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732059

RESUMEN

Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.


Asunto(s)
Antocianinas , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Mangifera , Proteínas de Plantas , Factores de Transcripción , Mangifera/metabolismo , Mangifera/genética , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Frutas/metabolismo , Frutas/genética , Antocianinas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/genética , Pigmentación/genética , Clorofila/metabolismo
2.
Opt Express ; 30(18): 32459-32473, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242307

RESUMEN

This study develops a multifunctional molecular optical nanoprobe (SiO2@Gd2O3: Yb3+/Er3+/Li+@Ce6/MC540) with a unique core-satellite form. The rare-earth doped nanodots with good crystallinity are uniformly embedded on the surface of a hydrophilic silica core, and the nanoprobe can emit near-infrared-IIb (NIR-IIb) luminescence for imaging as well as visible light that perfectly matches the absorption bands of two included photosensitizers under 980 nm irradiation. The optimal NIR-IIb emission and upconversion efficiency are attainable via regulating the doping ratios of Yb3+, Er3+ and Li+ ions. The relevant energy transfer mechanism was addressed theoretically that underpins rare-earth photoluminescence where energy back-transfer and cross relaxation processes play pivotal roles. The nanoprobe can achieve an excellent dual-drive photodynamic treatment performance, verified by singlet oxygen detections and live-dead cells imaging assays, with a synergistic effect. And a brightest NIR-IIb imaging was attained in tumoral site of mouse. The nanoprobe has a high potential to serve as a new type of optical theranostic agent for tumor.


Asunto(s)
Metales de Tierras Raras , Neoplasias , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Medicina de Precisión , Dióxido de Silicio , Oxígeno Singlete
3.
Bull Math Biol ; 84(10): 104, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35986819

RESUMEN

We developed a framework based on the software Unstructured Reaction-Diffusion Master Equation (URDME) to address tumor cells' proliferation and migration in a heterogeneous space, herein a 2D percolation cluster. A mitogenic paracrine signaling pathway is utilized phenomenologically to reveal how cells cooperate with one another. We modeled the emerging Allee effect using low seeding density culture (LSDC) assays to fit the model parameters. A Finite time scaling (FTS) function has been formulated to quantitatively analyze invasiveness of a virtual Growth-Migration (GM) system in mimicking the cancer cell growth. Through such simulation, we analyzed the GM dynamics of virtual model in mimicking the growth of BT-474 cancer cell populations in vitro in a 2D percolation cluster and calculated the successful penetration rate (SPR). By analyzing the temporal trajectories of the SPR, we could determine the critical exponents of the critical SPR scaling relation. The SPR transition point ([Formula: see text]), which is a fundamentally different from a conventional percolation transition point, is found to be negatively correlated with the invasiveness of this cancer cell. The [Formula: see text] of the three variations of the virtual GM system distinctly designated by varying paracrine-regulated Allee (PAllee) model phenotypes is 0.3408, 0.3675, and 0.4454, respectively. FTS algorithm thereon may serve as an approach to quantify invasiveness of tumor cells. Through a phenomenological paracrine model, inter-cell cooperation and mutual mitogenic boosting are enabled to elicit the Allee effect in the GM systems. The rationale behind such computationally tunable virtual mechanism can be applied to other circumstances concerning emerging processes.


Asunto(s)
Conceptos Matemáticos , Modelos Biológicos , Algoritmos , Simulación por Computador , Difusión
4.
J Magn Reson Imaging ; 54(3): 854-865, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33830573

RESUMEN

BACKGROUND: Accurately predicting the risk of death, recurrence, and metastasis of patients with nasopharyngeal carcinoma (NPC) is potentially important for personalized diagnosis and treatment. Survival outcomes of patients vary greatly in distinct stages of NPC. Prognostic models of stratified patients may aid in prognostication. PURPOSE: To explore the prognostic performance of MRI-based radiomics signatures in stratified patients with NPC. STUDY TYPE: Retrospective. POPULATION: Seven hundred and seventy-eight patients with NPC (T1-2 stage: 298, T3-4 stage: 480; training cohort: 525, validation cohort: 253). FIELD STRENGTH/SEQUENCE: Fast-spin echo (FSE) axial T1-weighted images, FSE axial T2-weighted images, contrast-enhanced FSE axial T1-weighted images at 1.5 T or 3.0 T. ASSESSMENT: Radiomics signatures, clinical nomograms, and radiomics nomograms combining the radiomic score (Radscore) and clinical factors for predicting progression-free survival (PFS) were constructed on T1-2 stage patient cohort (A), T3-4 stage patient cohort (B), and the entire dataset (C). STATISTICAL TESTS: Least absolute shrinkage and selection operator (LASSO) method was applied for radiomics modeling. Harrell's concordance indices (C-index) were employed to evaluate the predictive power of each model. RESULTS: Among 4,410 MRI-extracted features, we selected 16, 16, and 14 radiomics features most relevant to PFS for Models A, B, and C, respectively. Only 0, 1, and 4 features were found overlapped between models A/B, A/C, and B/C, respectively. Radiomics signatures constructed on T1-2 stage and T3-4 stage patients yielded C-indices of 0.820 (95% confidence interval [CI]: 0.763-0.877) and 0.726 (0.687-0.765), respectively, which were larger than those on the entire validation cohort (0.675 [0.637-0.713]). Radiomics nomograms combining Radscore and clinical factors achieved significantly better performance than clinical nomograms (P < 0.05 for all). DATA CONCLUSION: The selected radiomics features and prognostic performance of radiomics signatures differed per the type of NPC patients incorporated into the models. Radiomics models based on pre-stratified tumor stages had better prognostic performance than those on unstratified dataset. LEVEL OF EVIDENCE: 4 Technical Efficacy Stage: 5.


Asunto(s)
Neoplasias Nasofaríngeas , Recurrencia Local de Neoplasia , Humanos , Imagen por Resonancia Magnética , Carcinoma Nasofaríngeo/diagnóstico por imagen , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/patología , Estadificación de Neoplasias , Estudios Retrospectivos
5.
Nanotechnology ; 32(43)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34243172

RESUMEN

High-sensitivity optical imaging can be achieved through improving upconversion photoluminescence (UCPL) efficiency of localized surface plasmon resonance (LSPR)-enhanced excitation and emission. Herein, we report a type of UCPL nanoprobe, Au nanospheres assemblage@Gd2O3:Yb3+/Ln3+(Ln = Er, Ho, Tm), which exhibits emission enhancements from 46- to 96-fold as compared with its Au-free counterparts. The aggregation and interaction among Au nanospheres embedded inside the nanoprobe brings about three characteristic LSPR peaks in visible and near-infrared regions according to simulated and experimental absorption spectra, resulting in both excitation and emission fields simultaneously intensified all through the entire nanoprobe. We addressed a characteristic wavelength dependence on emission amplifications, which could be elucidated by a LSPR-enhanced UCPL mechanism and relevant rate equations that we addressed. The nanoprobe was verified to have a superior capability for optical bio-imaging with a negligible toxicityin vitroandin vivo. This study realizes a synchronous double-field-enhanced upconversion of optical nanoprobein situ, and may gain an insight into its mechanism underlying for LSPR-induced UCPL enhancement.

6.
Curr Microbiol ; 78(2): 765-774, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33469719

RESUMEN

The purpose of this study was to evaluate the control effect of Bacillus atrophaeus TE7 on Cladosporium cladosporioides of mango fruit and how it effects quality attributes during 'Tainong' mango fruit storage. The results showed that strain TE7 had inhibition ability with the biocontrol efficacy of 85.56%. Furthermore, strain TE7 could produce lipopeptide substance, iturin A, and surfactants, which inhibited the growth and development of C. cladosporioides. Moreover, strain TE7 had the ability of improving the activities of defense response-related enzyme in mangoes. The changes of peel color, flesh firmness, contents of total soluble solids (TSS), titratable acid (TA), and ascorbic acid (Vc) were significantly delayed by strain TE7. The results demonstrated that B. atrophaeus TE7 could be applied as a biocontrol agent for the pathogen C. cladosporioides of mango fruit.


Asunto(s)
Mangifera , Bacillus , Cladosporium , Frutas
7.
J Basic Microbiol ; 61(8): 686-696, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34101863

RESUMEN

Fusarium is an important plant pathogen and many cell wall-degrading enzymes (CWDEs) are produced in Fusarium-infected plant tissues. To investigate the role of CWDEs in the pathogenicity of pitaya pathogen, we isolated a Fusarium equiseti strain from the diseased pitaya fruit and the activities of CWDEs were determined. The higher polygalacturonase (PG) activity was confirmed both in vitro and vivo. Aiming at the PG gene, the CRISPR/Cas9 system of F. equiseti was constructed and optimized for the first time. Through the process of microhomology-mediated end joining, the flanking region containing 30 bp was used to mediate the homologous recombination of Cas9 double-strand breaks, and the PG gene knockout mutants were obtained by protoplast transformation. Through the phenotypic and pathogenicity experiments of the wild-type strain and mutant strain, the results showed that the colony growth rate and spore production of the strain without the PG gene decreased to some extent, and the lesion diameter and the degree of pericarp cell damage decreased, which showed that the CRISPR/Cas9 system could be used in F. equiseti and PG enzyme and can play a significant role in the interaction between F. equiseti and pitaya fruit.


Asunto(s)
Sistemas CRISPR-Cas , Fusarium/genética , Virulencia/genética , Antioxidantes , Cactaceae/microbiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Frutas/microbiología , Edición Génica/métodos , Enfermedades de las Plantas/microbiología
8.
Phys Chem Chem Phys ; 21(22): 11883-11891, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31123740

RESUMEN

Early diagnosis of diseases by contrast-enhanced magnetic resonance imaging (MRI) using iron oxide superparamagnetic nanoparticles (IOSNPs) has been extensively investigated due to the good biocompatibility of modified IOSNPs. However, the low magnetic sensitivity of IOSNPs still inflicts a certain limitation on their further application. In this study, we employed first-principles calculations based on spin-polarized density functional theory (SDFT) to find the optimal dysprosium-doped scheme for improving the magnetic sensitivity of IOSNPs. Elicited from the optimal doping scheme, we synthesized a sort of ultrasmall γ-iron oxide superparamagnetic nanoparticle by a special phase transfer-coprecipitation method. The appropriately Dy-doped γ-IOSNPs coated with short-chain polyethylene glycol are small in hydrodynamic size and highly dispersed with effectively improved superparamagnetism for enhancing T2-weighted MRI relaxivity, which is well consistent with the SDFT prediction. The measured spin-spin relaxivity r2 is 123.2 s-1 mM-1, nearly double that of the pure γ-IOSNPs (67.8 s-1 mM-1) and substantially surpassing that of both clinically-approved T2 contrast agents Feridex and Resivist. The low dysprosium doping does not induce notable nanotoxicity for IOSNPs, but contributes sufficiently to their high relaxation performance instead, which endows the Dy-doped γ-IOSNPs with high potential as a better T2-weighted MRI contrast medium. Both the method and the nanomagnets reported in this study are expected to promote studies on designing and preparing high-performance MRI contrast agents as well as computational materials.

9.
Phys Chem Chem Phys ; 20(15): 10038-10047, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29620132

RESUMEN

Gadolinium oxide-based core-shelled nanoparticles have recently emerged as novel magnetic resonance imaging contrast agents for high relaxivity and tumor targeting. However, their relaxivity enhancement mechanism has not yet been clearly understood. We prepared highly dispersible and uniform core-shell structured nanoparticles by encapsulating silica spheres (90 nm in diameter) with gadolinium oxide shells of different thicknesses (from 1.5 nm to 20 nm), and proved experimentally that the shell thickness has an inverse effect on relaxivity. The core-shelled nanoparticles are of a larger relaxivity than the commercial contrast agent Gd-DTPA, with an enhancement from 1.8 to 7.3 times. Based on the Solomon-Bloembergen-Morgan theory which is usually adopted for interpreting the relaxation changes of water protons in Gd3+ chelates, we introduced a shielding ansatz of nanoshells and derived a concise formula specifically to correlate the relaxivity of this sort of core-shelled nanoparticles with the shell thickness directly. The formula calculation is well consistent with the experimental results, and the formula can be generally applied to evaluate the relaxation enhancement underlying the high relaxivity of any core-shelled nanoparticle. Furthermore, the core-shelled nanoparticles possess a negligible nanotoxicity according to the in vitro cytotoxicity and in vivo histopathology and hematology assays. The enhanced signals of in vivo tumor-targeted magnetic resonance imaging indicate that the ultrathin gadolinium oxide nanoshells may function as a potential candidate for advanced positive contrast agents in further clinical applications.

10.
Phys Chem Chem Phys ; 19(7): 5366-5376, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28155924

RESUMEN

We report a class of multi-functional core-shell nanoarchitectures, consisting of silica nanospheres as the core and Gd2O3:Dy3+ nanocrystals as the ultra-thin shell, that enable unique multi-color living cell imaging and remarkable in vivo magnetic resonance imaging. These types of targeted cell imaging nanoarchitectures can be used as a variety of fluorescence nanoprobes due to the multi-color emissions of the Gd2O3:Dy3+ nanophosphor. We also proposed a strategy of modulating core-shell structure design to achieve an enhanced magnetic resonance contrast ability of Gd2O3 nanoagents, and the classical Solomon-Bloembergen-Morgan theory was applied to explicate the mechanism underlying the enhancement. The as-synthesized ligand-free nanomaterial possesses a suitable particle size for cellular uptake as well as avoiding penetrating the blood-brain barrier with good water-solubility, stability, dispersibility and uniformity. The extremely low cytotoxicity and favorable biocompatibility obtained from in vitro and in vivo bioassays of the as-designed nanoparticles indicate their excellent potential as a candidate for functioning as a targeted nanoprobe.


Asunto(s)
Disprosio/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/toxicidad , Gadolinio/química , Imagen por Resonancia Magnética , Nanopartículas/química , Imagen Óptica , Animales , Supervivencia Celular/efectos de los fármacos , Gadolinio/toxicidad , Células HEK293 , Células HeLa , Humanos , Ratones , Nanopartículas/toxicidad
11.
Phys Chem Chem Phys ; 19(24): 15693-15700, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28540953

RESUMEN

We propose a novel and efficient F- anion doping strategy for enhancing upconversion luminescence in upconversion nanophosphors. NaGd(MoO4)2:Yb3+/Er3+ nanophosphors doped with different F- contents are synthesized hydrothermally. Rietveld refinement results obtained from X-ray diffraction data indicate that the Gd-O bond length decreases and the O-Gd-O bond angle varies with increasing F- content, resulting in augmented local crystal field strength and distorted local site symmetry of the dopant lanthanide sites. Judd-Ofelt analysis suggests that the calculated radiative quantum efficiency of the 4S3/2 level and the radiative branching ratio of 4S3/2 → 4I15/2 transition in F--doped NaGd(MoO4)2:Yb3+/Er3+ nanophosphors are much greater than those in F- anion-free samples. It is inferred that F- anion doping helps to reduce the nonradiative transition probabilities based on the luminescence dynamics. Rietveld refinement results and Judd-Ofelt analysis confirm jointly that doping of interstitial F- anions could enhance local crystal field strength with odd parity and modify site symmetry of the lanthanide activator ions, leading to enhanced radiative transitions and inhibited nonradiative transitions. A maximum of 17-fold enhancement of total emission intensity is found in NaGd(MoO4)2:Yb3+/Er3+/F- nanophosphors compared with F- anion-free counterparts. The proposed F- anion doping strategy provides an alternative approach for enhancing upconversion luminescence efficiency and could be extended to other inorganic upconversion nanomaterials.

12.
J Biol Phys ; 42(4): 637-658, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27678112

RESUMEN

We study in silico the influence of host tissue inhomogeneity on tumor cell proliferation and diffusion by simulating the mobility of a tumor on percolation clusters with different homogeneities of surrounding tissues. The proliferation and diffusion of a tumor in an inhomogeneous tissue could be characterized in the framework of the percolation theory, which displays similar thresholds (0.54, 0.44, and 0.37, respectively) for tumor proliferation and diffusion in three kinds of lattices with 4, 6, and 8 connecting near neighbors. Our study reveals the existence of a critical transition concerning the survival and diffusion of tumor cells with leaping metastatic diffusion movement in the host tissues. Tumor cells usually flow in the direction of greater pressure variation during their diffusing and infiltrating to a further location in the host tissue. Some specific sites suitable for tumor invasion were observed on the percolation cluster and around these specific sites a tumor can develop into scattered tumors linked by some advantage tunnels that facilitate tumor invasion. We also investigate the manner that tissue inhomogeneity surrounding a tumor may influence the velocity of tumor diffusion and invasion. Our simulation suggested that invasion of a tumor is controlled by the homogeneity of the tumor microenvironment, which is basically consistent with the experimental report by Riching et al. as well as our clinical observation of medical imaging. Both simulation and clinical observation proved that tumor diffusion and invasion into the surrounding host tissue is positively correlated with the homogeneity of the tissue.


Asunto(s)
Modelos Biológicos , Neoplasias/patología , Proliferación Celular , Simulación por Computador , Difusión , Método de Montecarlo , Invasividad Neoplásica , Metástasis de la Neoplasia
13.
Phys Chem Chem Phys ; 17(23): 15412-8, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-26006337

RESUMEN

Manipulation of upconversion (UC) emission is of particular importance for multiplexed bioimaging. Here, we precisely manipulate the UC color output by utilizing the phonon-assisted energy back transfer (EBT) process in ultra-small (sub-10 nm) Gd2O3:Yb(3+)/Er(3+) UC nanoparticles (UCNPs). We synthesized the Gd2O3:Yb(3+)/Er(3+) UCNPs by adopting the laser ablation in liquid (LAL) technique. The synthesized Gd2O3:Yb(3+)/Er(3+) UCNPs are small spherical and monoclinic structures. Continuous color-tunable (from green to red) UC fluorescence emission is achieved by increasing the concentration of Yb(3+) ions from 0 to 15 mol%. A phonon-assisted energy back transfer (EBT) process from Er(3+) ((4)S3/2 → (4)I13/2) to nearby Yb(3+) ((2)F7/2 → (2)F5/2), which can significantly enhance red emission at 672 nm and decrease green emission, is responsible for the color-tunable UC emission by increasing the Yb(3+) concentration in Gd2O3:Yb(3+)/Er(3+) UC nanoparticles.


Asunto(s)
Nanopartículas/química , Transferencia de Energía , Erbio/química , Gadolinio/química , Rayos Infrarrojos , Fonones , Teoría Cuántica , Iterbio/química
14.
Langmuir ; 30(43): 13005-13, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25289961

RESUMEN

Monoclinic Gd2O3:Eu(3+) nanoparticles (NPs) possess favorable magnetic and optical properties for biomedical application. However, how to obtain small enough NPs still remains a challenge. Here we combined the standard solid-state reaction with the laser ablation in liquids (LAL) technique to fabricate sub-10 nm monoclinic Gd2O3:Eu(3+) NPs and explained their formation mechanism. The obtained Gd2O3:Eu(3+) NPs exhibit bright red fluorescence emission and can be successfully used as fluorescence probe for cells imaging. In vitro and in vivo magnetic resonance imaging (MRI) studies show that the product can also serve as MRI good contrast agent. Then, we systematically investigated the nanotoxicity including cell viability, apoptosis in vitro, as well as the immunotoxicity and pharmacokinetics assays in vivo. This investigation provides a platform for the fabrication of ultrafine monoclinic Gd2O3:Eu(3+) NPs and evaluation of their efficiency and safety in preclinical application.


Asunto(s)
Europio/química , Gadolinio/química , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/química , Imagen Óptica/métodos , Tamaño de la Partícula , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Femenino , Gadolinio/farmacocinética , Gadolinio/toxicidad , Masculino , Ratones , Modelos Moleculares , Conformación Molecular , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
15.
Bull Math Biol ; 76(6): 1416-28, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24824850

RESUMEN

The scaling and shift of the gene expression boundary in a developing embryo are two key problems with regard to morphogen gradient formation in developmental biology. In this study, a bigradient model was applied to a nonlinear reaction diffusion system (NRDS) to investigate the location of morphogen gene expression boundary. In contrast to the traditional synthesis-diffusion-degradation model, the introduction of NRDS in this study contributes to the precise gene expression boundary at arbitrary location along the anterior-posterior axis other than simply midembryo even when the linear characteristic lengths of two morphogens are equal. The scaling location depends on the ratio of two morphogen influxes (w) and concentrations (r) as well as the nonlinear reaction diffusion parameters (a, n). We also formulate a direct relationship between the shift in the gene expression boundary and the influx of morphogen and find that enhancing the morphogen influx is helpful to build up a robust gene expression boundary. By analyzing the robustness of the morphogen gene expression boundary and comparing with the relevant results in linear reaction diffusion system, we determine the precise range of the ratio of the two morphogen influxes with a lower shift in the morphogen gene expression boundary and increased system robustness.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Morfogénesis/genética , Humanos , Modelos Genéticos
16.
Food Res Int ; 190: 114594, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945568

RESUMEN

Passion fruits are highly perishable during postharvest storage and transportation, prompting the exploration of natural preservatives. This study investigates the synergistic effects of Aloe vera (ALV) and tea polyphenols (TP) coatings on quality retention, ripening modulation, and associated regulatory mechanisms in stored "golden" passion fruit (Passiflora spp.) at 10 °C. The application of a composite coating comprising 40 % ALV and 0.1 g/L TP led to notable improvements in fruit preservation over a 28-day storage period. At the day of 28, quantitatively, the ALV + TP treatment reduced weight loss by 41.60 %, shrinkage index by 28.13 %, and decay index by 50 %, significantly outperforming the control and individual treatments; the treated fruits exhibited enhanced firmness, reduced ethylene production, and the respiration peak was delayed about 6 days. Metabolomic analysis revealed pronounced alterations in key metabolic pathways, notably phenylpropanoid and flavonoid biosynthesis. Specifically, significant increases in metabolites such as phenolic acids (Feruloylmalic acid and Acropyrone) and flavonoids (Okanin-4'-O-glucoside, Apigenin-8-C-Arabinoside, Quercetin-3-O- (2'-O-galloyl) galactoside, and Catechin callate) were observed. Concurrently, transcript levels of key biosynthetic genes including cinnamate 4-hydroxylase (PeC4H), 4-coumarate-coenzyme a ligase (PeC4L), hydroxycinnamoyl transferase (PeHCT) and flavonol synthase (PeFLS) were significantly up-regulated by ALV + TP coating, indicating a robust activation of these pathways. The findings underscore the effectiveness of the ALV + TP composite coating as an environmentally friendly strategy for enhancing postharvest quality by promoting the accumulation of beneficial phenolic acids and flavonoids in passion fruits.


Asunto(s)
Aloe , Flavonoides , Frutas , Passiflora , Polifenoles , Frutas/química , Passiflora/química , Aloe/química , Fenoles , Almacenamiento de Alimentos/métodos , Té/química , Conservación de Alimentos/métodos
17.
Nanomaterials (Basel) ; 13(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36985918

RESUMEN

Gold nanorods (GNRs) coated with silica shells are excellent photothermal agents with high surface functionality and biocompatibility. Understanding the correlation of the coating process with both structure and property of silica-coated GNRs is crucial to their optimizing preparation and performance, as well as tailoring potential applications. Herein, we report a machine learning (ML) prediction of coating silica on GNR with various preparation parameters. A total of 306 sets of silica-coated GNRs altogether were prepared via a sol-gel method, and their structures were characterized to extract a dataset available for eight ML algorithms. Among these algorithms, the eXtreme gradient boosting (XGboost) classification model affords the highest prediction accuracy of over 91%. The derived feature importance scores and relevant decision trees are employed to address the optimal process to prepare well-structured silica-coated GNRs. The high-throughput predictions have been adopted to identify optimal process parameters for the successful preparation of dumbbell-structured silica-coated GNRs, which possess a superior performance to a conventional cylindrical core-shell counterpart. The dumbbell silica-coated GNRs demonstrate an efficient enhanced photothermal performance in vivo and in vitro, validated by both experiments and time domain finite difference calculations. This study epitomizes the potential of ML algorithms combined with experiments in predicting, optimizing, and accelerating the preparation of core-shell inorganic materials and can be extended to other nanomaterial research.

18.
Bull Math Biol ; 74(2): 434-52, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21972030

RESUMEN

Based on the logistic growth law for a tumour derived from enzymatic dynamics, we address from a physical point of view the phenomena of synergism, additivity and antagonism in an avascular anti-tumour system regulated externally by dual coupling periodic interventions, and propose a theoretical model to simulate the combinational administration of chemotherapy and immunotherapy. The in silico results of our modelling approach reveal that the tumour population density of an anti-tumour system, which is subject to the combinational attack of chemotherapeutical as well as immune intervention, depends on four parameters as below: the therapy intensities D, the coupling intensity I, the coupling coherence R and the phase-shifts Φ between two combinational interventions. In relation to the intensity and nature (synergism, additivity and antagonism) of coupling as well as the phase-shift between two therapeutic interventions, the administration sequence of two periodic interventions makes a difference to the curative efficacy of an anti-tumour system. The isobologram established from our model maintains a considerable consistency with that of the well-established Loewe Additivity model (Tallarida, Pharmacology 319(1):1-7, 2006). Our study discloses the general dynamic feature of an anti-tumour system regulated by two periodic coupling interventions, and the results may serve as a supplement to previous models of drug administration in combination and provide a type of heuristic approach for preclinical pharmacokinetic investigation.


Asunto(s)
Antineoplásicos/uso terapéutico , Simulación por Computador , Antagonismo de Drogas , Sinergismo Farmacológico , Inmunoterapia , Modelos Inmunológicos , Neoplasias/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Humanos
19.
J Agric Food Chem ; 70(32): 9919-9930, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35921197

RESUMEN

Papaya (Carica papaya L.) is a climacteric fruit susceptible to postharvest losses attributable to ethylene-induced ripening and softening. In this study, we examined the effect of 1-methylcyclopropene (1-MCP) treatment (1 µL L-1 for 20 h) on the textural properties of "SunUp" papaya fruit and investigated the regulatory mechanisms of molecular profiles. Compared with control, postharvest 1-MCP treatment significantly inhibited fruit softening, which is associated with higher hemicellulose content and lower xylanase activity of papaya fruit. Moreover, RNA-seq and qRT-PCR analyses indicated that CpbHLH3 and CpXYN1 were differentially expressed during storage. Yeast one-hybrid, electrophoretic mobility shift assays, and dual-luciferase reporter assays disclosed that CpbHLH3 activated the transcription of CpXYN1 by binding directly to its promoter. Transient overexpression of CpbHLH3 alleviates the inhibitory effect of 1-MCP on softening by increasing xylanase activity and upregulating the gene expression. Our observations provide new insights into the transcriptional regulatory mechanisms that govern softening of postharvest papaya fruit.


Asunto(s)
Carica , Carica/genética , Carica/metabolismo , Ciclopropanos , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Verduras/metabolismo
20.
Front Nutr ; 9: 911542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669069

RESUMEN

Due to geographical location and climatic factors, postharvest storage and preservation of tropical fruits and vegetables are still facing huge challenges. Ethephon (ETH) is widely used as an ethylene donor to achieve the commercial color and flavor of climacteric fruits. However, the effect of ETH on fruit coloration was affected by many factors, such as fruit species, plant hormones, and storage conditions. In this study, the main mango variety "Guifei" in Hainan, China, was used to study the effects of different concentrations of ETH on fruit ripening and coloration during storage at 25°C. Results showed that postharvest treatment with ETH (300, 500, and 900 mg·L-1) enhanced the activities of ACS and ACO, stimulated the release of endogenous ethylene, and accelerated fruit softening and color transformation. Compared with control, ETH treatment not only accelerated the breakdown of chlorophyll with higher activities of Chlase and MDCase but also induced the synthesis of carotenoid and anthocyanin with higher activities of PAL, CHI, DFR, and UFGT. Moreover, the changes in DFR and UFGT activities coincided with the increase in ETH concentration. Further, correlation analysis showed that the production of endogenous ethylene induced by ETH was significantly negatively correlated with firmness and chlorophyll content, whereas positively correlated with MDA content and anthocyanin content. This study suggests that the positive effect of ETH on "Guifei" mango color transformation is concentration-dependent within a certain concentration range. Anthocyanin is the main pigment for the red formation of "Guifei" mango, and DFR and UFGT may play critical roles in anthocyanin synthesis. ETH promoted the red coloration by promoting the release of endogenous ethylene and enhancing the activities of anthocyanin synthesis enzymes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA