Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 18(11): e1010473, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36413574

RESUMEN

Histone acetylation has been shown to involve in stress responses. However, the detailed molecular mechanisms that how histone deacetylases and transcription factors function in drought stress response remain to be understood. In this research, we show that ENAP1 and ENAP2 are positive regulators of drought tolerance in plants, and the enap1enap2 double mutant is more sensitive to drought stress. Both ENAP1 and ENAP2 interact with MYB44, a transcription factor that interacts with histone deacetylase HDT4. Genetics data show that myb44 null mutation enhances the sensitivity of enap1enap2 to drought stress. Whereas, HDT4 negatively regulates plant drought response, the hdt4 mutant represses enap1enap2myb44 drought sensitive phenotype. In the normal condition, ENAP1/2 and MYB44 counteract the HDT4 function for the regulation of H3K27ac. Upon drought stress, the accumulation of MYB44 and reduction of HDT4 leads to the enrichment of H3K27ac and the activation of target gene expression. Overall, this research provides a novel molecular mechanism by which ENAP1, ENAP2 and MYB44 form a complex to restrict the function of HDT4 in the normal condition; under drought condition, accumulated MYB44 and reduced HDT4 lead to the elevation of H3K27ac and the expression of drought responsive genes, as a result, plants are drought tolerant.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Sequías , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
2.
Plant Cell ; 33(2): 322-337, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33793786

RESUMEN

Ethylene is an important phytohormone with pleotropic roles in plant growth, development, and stress responses. ETHYLENE INSENSITIVE2 (EIN2) mediates the transduction of the ethylene signal from the endoplasmic reticulum membrane to the nucleus, where its C-terminus (EIN2-C) regulates histone acetylation to mediate transcriptional regulation by EIN3. However, no direct interaction between EIN2-C and EIN3 has been detected. To determine how EIN2-C and EIN3 act together, we followed a synthetic approach and engineered a chimeric EIN2-C with EIN3 DNA-binding activity but lacking its transactivation activity (EIN2C-EIN3DB). The overexpression of EIN2C-EIN3DB in either wild-type or in the ethylene-insensitive mutant ein3-1 eil1-1 led to a partial constitutive ethylene response. Chromatin immunoprecipitation sequencing showed that EIN2C-EIN3DB has DNA-binding activity, indicating that EIN3DB is functional in EIN2C-EIN3DB. Furthermore, native EIN3 protein levels determine EIN2C-EIN3DB binding activity and binding targets in a positive feedback loop by interacting with EIN2C-EIN3DB to form a heterodimer. Additionally, although EIN3 does not direct affect histone acetylation levels in the absence of EIN2, it is required for the ethylene-induced elevation of H3K14Ac and H3K23Ac in the presence of EIN2. Together, we reveal efficient and specific DNA-binding by dimerized EIN3 in the presence of ethylene to mediate positive feedback regulation, which is required for EIN2-directed elevation of histone acetylation to integrate into an EIN3-dependent transcriptional activation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Etilenos/farmacología , Retroalimentación Fisiológica , Histonas/metabolismo , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/metabolismo , Acetilación/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Secuencia de Bases , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/química , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Receptores de Superficie Celular/química , Factores de Transcripción/química
3.
PLoS Genet ; 17(12): e1009955, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910726

RESUMEN

Histone acetylation is involved in the regulation of seed germination. The transcription factor ABI5 plays an essential role in ABA- inhibited seed germination. However, the molecular mechanism of how ABI5 and histone acetylation coordinate to regulate gene expression during seed germination is still ambiguous. Here, we show that ENAP1 interacts with ABI5 and they co-bind to ABA responsive genes including ABI5 itself. The hypersensitivity to ABA of ENAP1ox seeds germination is recovered by the abi5 null mutation. ABA enhances H3K9Ac enrichment in the promoter regions as well as the transcription of target genes co-bound by ENAP1 and ABI5, which requires both ENAP1 and ABI5. ABI5 gene is directly regulated by ENAP1 and ABI5. In the enap1 deficient mutant, H3K9Ac enrichment and the binding activity of ABI5 in its own promoter region, along with ABI5 transcription and protein levels are all reduced; while in the abi5-1 mutant, the H3K9Ac enrichment and ENAP1 binding activity in ABI5 promoter are decreased, suggesting that ENAP1 and ABI5 function together to regulate ABI5- mediated positive feedback regulation. Overall, our research reveals a new molecular mechanism by which ENAP1 regulates H3K9 acetylation and mediates the positive feedback regulation of ABI5 to inhibit seed germination.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Germinación/genética , Factores de Transcripción/genética , Acetilación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas/genética , Reguladores del Crecimiento de las Plantas/genética , Procesamiento Proteico-Postraduccional/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Transducción de Señal/genética
4.
New Phytol ; 236(5): 1762-1778, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36073540

RESUMEN

The various combinations and regulations of different subunits of phosphatase PP2A holoenzymes underlie their functional complexity and importance. However, molecular mechanisms governing the assembly of PP2A complex in response to external or internal signals remain largely unknown, especially in Arabidopsis thaliana. We found that the phosphorylation status of Bß of PP2A acts as a switch to regulate the activity of PP2A. In the absence of ethylene, phosphorylated Bß leads to an inactivation of PP2A; the substrate EIR1 remains to be phosphorylated, preventing the EIR1-mediated auxin transport in epidermis, leading to normal root growth. Upon ethylene treatment, the dephosphorylated Bß mediates the formation of the A2-C4-Bß protein complex to activate PP2A, resulting in the dephosphorylation of EIR1 to promote auxin transport in epidermis of elongation zone, leading to root growth inhibition. Altogether, our research revealed a novel molecular mechanism by which the dephosphorylation of Bß subunit switches on PP2A activity to dephosphorylate EIR1 to establish EIR1-mediated auxin transport in the epidermis in elongation zone for root growth inhibition in response to ethylene.


Asunto(s)
Arabidopsis , Monoéster Fosfórico Hidrolasas , Fosforilación , Monoéster Fosfórico Hidrolasas/metabolismo , Etilenos/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/metabolismo
5.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496578

RESUMEN

Ethylene signaling has been indicated as a potential positive regulator of plant warm ambient temperature response but its underlying molecular mechanisms are largely unknown. Here, we show that LHP1 and INO80 cooperate with ethylene signaling for warm ambient temperature response by activating specific bivalent genes. We found that the presence of warm ambient temperature activates ethylene signaling through EIN2 and EIN3, leading to an interaction between LHP1 and accumulated EIN2-C to co-regulate a subset of LHP1-bound genes marked by H3K27me3 and H3K4me3 bivalency. Furthermore, we demonstrate that INO80 is recruited to bivalent genes by interacting with EIN2-C and EIN3, promoting H3K4me3 enrichment and facilitating transcriptional activation in response to warm ambient temperature. Together, our findings illustrate a novel mechanism wherein ethylene signaling orchestrates LHP1 and INO80 to regulate warm ambient temperature response through activating specific bivalent genes in Arabidopsis.

6.
Curr Opin Plant Biol ; 81: 102592, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38941723

RESUMEN

Plant hormones activate receptors, initiating intracellular signaling pathways. Eventually, hormone-specific transcription factors become active in the nucleus, facilitating hormone-induced transcriptional regulation. Chromatin plays a fundamental role in the regulation of transcription, the process by which genetic information encoded in DNA is converted into RNA. The structure of chromatin, a complex of DNA and proteins, directly influences the accessibility of genes to the transcriptional machinery. The different signaling pathways and transcription factors involved in the transmission of information from the receptors to the nucleus have been readily explored, but not so much for the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation, specifically for plant hormone responses. In this review, we will focus on the advancements in understanding how chromatin receives plant hormones, facilitating the changes necessary for fast, robust, and specific transcriptional regulation.


Asunto(s)
Cromatina , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Transducción de Señal , Cromatina/metabolismo , Cromatina/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
7.
Cell Rep ; 43(9): 114758, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39269904

RESUMEN

Ethylene signaling has been indicated as a potential positive regulator of plant warm ambient temperature response, but its underlying molecular mechanisms are largely unknown. Here, we show that LHP1 and INO80 cooperate with ethylene signaling for warm ambient temperature response by activating specific bivalent genes. We found that the presence of warm ambient temperature activates ethylene signaling through EIN2 and EIN3, leading to an interaction between LHP1 and accumulated EIN2-C to co-regulate a subset of LHP1-bound genes marked by H3K27me3 and H3K4me3 bivalency. Furthermore, we demonstrate that INO80 is recruited to bivalent genes by interacting with EIN2-C and EIN3, promoting H3K4me3 enrichment and facilitating transcriptional activation in response to a warm ambient temperature. Together, our findings illustrate a mechanism wherein ethylene signaling orchestrates LHP1 and INO80 to regulate warm ambient temperature response by activating specific bivalent genes in Arabidopsis.

8.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38260516

RESUMEN

Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprogramming, in which EIN2-C-directed regulation of histone acetylation is the first key-step for chromatin to perceive ethylene signaling. However, the histone acetyltransferase in this process remains unknown. Here, we identified histone acetyltransferase HAF2, and mutations in HAF2 confer plants with ethylene insensitivity. Furthermore, we found that HAF2 interacts with EIN2-C in response to ethylene. Biochemical assays demonstrated that the bromodomain of HAF2 binds to H3K14ac and H3K23ac peptides with a distinct affinity for H3K14ac; the HAT domain possesses acetyltransferase catalytic activity for H3K14 and H3K23 acetylation, with a preference for H3K14. ChIP-seq results provide additional evidence supporting the role of HAF2 in regulating H3K14ac and H3K23ac levels in response to ethylene. Finally, our findings revealed that HAF2 co-functions with pyruvate dehydrogenase complex (PDC) to regulate H3K14ac and H3K23ac in response to ethylene in an EIN2 dependent manner. Overall, this research reveals that HAF2 as a histone acetyltransferase that forms a complex with EIN2-C and PDC, collectively governing histone acetylation of H3H14ac and H3K23ac, preferentially for H3K14 in response to ethylene.

9.
Sci Adv ; 10(30): eado2825, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058774

RESUMEN

Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C-directed regulation of histone acetylation is the first key step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response. PDC is identified as an EIN2-C nuclear partner, and ethylene triggers its nuclear accumulation. Mutations in PDC lead to an ethylene hyposensitivity that results from the reduction of histone acetylation and transcription activation. Enzymatically active nuclear PDC synthesizes nuclear acetyl CoA for EIN2-C-directed histone acetylation and transcription regulation. These findings uncover a mechanism by which PDC-EIN2 converges the mitochondrial enzyme-mediated nuclear acetyl CoA synthesis with epigenetic and transcriptional regulation for plant hormone response.


Asunto(s)
Acetilcoenzima A , Proteínas de Arabidopsis , Arabidopsis , Núcleo Celular , Etilenos , Regulación de la Expresión Génica de las Plantas , Histonas , Complejo Piruvato Deshidrogenasa , Acetilación , Etilenos/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Acetilcoenzima A/metabolismo , Transcripción Genética , Mutación , Transducción de Señal , Receptores de Superficie Celular
10.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961310

RESUMEN

Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C-directed regulation of histone acetylation is the first key-step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response. PDC is identified as an EIN2-C nuclear partner, and ethylene triggers its nuclear accumulation. Mutations in PDC lead to an ethylene-hyposensitivity that results from the reduction of histone acetylation and transcription activation. Enzymatically active nuclear PDC synthesize nuclear acetyl CoA for EIN2-C-directed histone acetylation and transcription regulation. These findings uncover a mechanism by which PDC-EIN2 converges the mitochondrial enzyme mediated nuclear acetyl CoA synthesis with epigenetic and transcriptional regulation for plant hormone response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA