Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Fungi (Basel) ; 9(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36675888

RESUMEN

The Brown root rot pathogen Pyrrhoderma noxium (Corner) L.W. Zhou and Y.C. Dai is known to infect a large number of culturally and economically important plant species across the world. Although chemical control measures have been effective in managing this pathogen, their adverse effects on the ecosystem have limited their use. The use of biological control agents (BCAs) thus is generally accepted as an environmentally friendly way of managing various pathogens. Testing various consortia of the BCAs with different antagonistic mechanisms may even provide better disease protection than the use of a single BCA against aggressive plant pathogens such as the P. noxium. In the presented study, the wood decay experiment and the pot trial confirmed that the consortium of Trichoderma strains (#5029 and 5001) and streptomycetes (#USC-6914 and #USC-595-B) used was effective in protecting wood decay and plant disease caused by P. noxium. Among the treatments, complete elimination of the pathogen was observed when the BCAs were applied as a consortium. In addition, the BCAs used in this study promoted the plant growth. Therefore, Trichoderma and streptomycetes consortium could be used as a potential biocontrol measure to manage P. noxium infections in the field over the application of hazardous chemical control measures.

2.
J Fungi (Basel) ; 8(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36294670

RESUMEN

A wide range of phytopathogenic fungi exist causing various plant diseases, which can lead to devastating economic, environmental, and social impacts on a global scale. One such fungus is Pyrrhoderma noxium, causing brown root rot disease in over 200 plant species of a variety of life forms mostly in the tropical and subtropical regions of the globe. The aim of this study was to discover the antagonistic abilities of two Trichoderma strains (#5001 and #5029) found to be closely related to Trichoderma reesei against P. noxium. The mycoparasitic mechanism of these Trichoderma strains against P. noxium involved coiling around the hyphae of the pathogen and producing appressorium like structures. Furthermore, a gene expression study identified an induced expression of the biological control activity associated genes in Trichoderma strains during the interaction with the pathogen. In addition, volatile and diffusible antifungal compounds produced by the Trichoderma strains were also effective in inhibiting the growth of the pathogen. The ability to produce Indole-3-acetic acid (IAA), siderophores and the volatile compounds related to plant growth promotion were also identified as added benefits to the performance of these Trichoderma strains as biological control agents. Overall, these results show promise for the possibility of using the Trichoderma strains as potential biological control agents to protect P. noxium infected trees as well as preventing new infections.

3.
Ecol Evol ; 10(6): 3120-3137, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32211182

RESUMEN

Madagascar is home to 208 indigenous palm species, almost all of them endemic and >80% of which are endangered. We undertook complete population census and sampling for genetic analysis of a relatively recently discovered giant fan palm, the Critically Endangered Tahina spectablis in 2008 and 2016. Our 2016 study included newly discovered populations and added to our genetic study. We incorporated these new populations into species distribution niche model (SDM) and projected these onto maps of the region. We developed population matrix models based on observed demographic data to model population change and predict the species vulnerability to extinction by undertaking population viability analysis (PVA). We investigated the potential conservation value of reintroduced planted populations within the species potential suitable habitat. We found that the population studied in 2008 had grown in size due to seedling regeneration but had declined in the number of reproductively mature plants, and we were able to estimate that the species reproduces and dies after approximately 70 years. Our models suggest that if the habitat where it resides continues to be protected the species is unlikely to go extinct due to inherent population decline and that it will likely experience significant population growth after approximately 80 years due to the reproductive and life cycle attributes of the species. The newly discovered populations contain more genetic diversity than the first discovered southern population which is genetically depauperate. The species appears to demonstrate a pattern of dispersal leading to isolated founder plants which may eventually lead to population development depending on local establishment opportunities. The conservation efforts currently put in place including the reintroduction of plants within the species potential suitable habitat if maintained are thought likely to enable the species to sustain itself but it remains vulnerable to anthropogenic impacts.

4.
Sci Rep ; 7: 46399, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28422136

RESUMEN

Threatened species in rainforests may be vulnerable to climate change, because of their potentially narrow thermal tolerances, small population sizes and restricted distributions. This study modelled climate induced changes on the habitat distribution of the endangered rainforest plant Triunia robusta, endemic to southeast Queensland, Australia. Species distribution models were developed for eastern Australia at 250 m grids and southeast Queensland at 25 m grids using ground-truthed presence records and environmental predictor data. The species' habitat distribution under the current climate was modelled, and the future potential habitat distributions were projected for the epochs 2030, 2050 and 2070. The eastern Australia model identified several spatially disjunct, broad habitat areas of coastal eastern Australia consistent with the current distribution of rainforests, and projected a southward and upslope contraction driven mainly by average temperatures exceeding current range limits. The southeast Queensland models suggest a dramatic upslope contraction toward locations where the majority of known populations are found. Populations located in the Sunshine Coast hinterland, consistent with past rainforest refugia, are likely to persist long-term. Upgrading the level of protection for less formal nature reserves containing viable populations is a high priority to better protect refugial T. robusta populations with respect to climate change.


Asunto(s)
Cambio Climático , Especies en Peligro de Extinción , Proteaceae , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Modelos Biológicos , Filogeografía , Queensland , Bosque Lluvioso , Refugio de Fauna
5.
Appl Plant Sci ; 5(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29299396

RESUMEN

PREMISE OF THE STUDY: The swamp orchid, Phaius australis (Orchidaceae), is nationally endangered due to illegal collection and habitat loss and fragmentation, resulting in a disjunct distribution in spring and coastal wetland ecotones along Australia's east coast. Polymorphic microsatellite markers were developed to study genetic diversity and population structure for conservation and restoration purposes. METHODS AND RESULTS: Illumina HiSeq high-throughput sequencing was used to develop 15 nuclear microsatellite markers, including 10 polymorphic markers for P. australis. Polymorphism at each marker was evaluated using 90 individuals from four natural populations. The number of alleles per locus ranged from one to three, and the observed and expected heterozygosity varied from 0.036 to 0.944 and from 0.035 to 0.611, respectively. These markers transferred successfully to congener P. bernaysii. CONCLUSIONS: The microsatellite markers will be useful for revealing levels of genetic diversity and gene flow for P. australis and may inform future conservation efforts.

6.
PLoS One ; 11(4): e0153565, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27119149

RESUMEN

Australia's Great Sandy Region is of international significance containing two World Heritage areas and patches of rainforest growing on white sand. Previous broad-scale analysis found the Great Sandy biogeographic subregion contained a significantly more phylogenetically even subset of species than expected by chance contrasting with rainforest on white sand in Peru. This study aimed to test the patterns of rainforest diversity and relatedness at a finer scale and to investigate why we may find different patterns of phylogenetic evenness compared with rainforests on white sands in other parts of the world. This study focussed on rainforest sites within the Great Sandy and surrounding areas in South East Queensland (SEQ), Australia. We undertook field collections, expanded our three-marker DNA barcode library of SEQ rainforest plants and updated the phylogeny to 95% of the SEQ rainforest flora. We sampled species composition of rainforest in fixed area plots from 100 sites. We calculated phylogenetic diversity (PD) measures as well as species richness (SR) for each rainforest community. These combined with site variables such as geology, were used to evaluate patterns and relatedness. We found that many rainforest communities in the Great Sandy area were significantly phylogenetically even at the individual site level consistent with a broader subregion analysis. Sites from adjacent areas were either not significant or were significantly phylogenetically clustered. Some results in the neighbouring areas were consistent with historic range expansions. In contrast with expectations, sites located on the oldest substrates had significantly lower phylogenetic diversity (PD). Fraser Island was once connected to mainland Australia, our results are consistent with a region geologically old enough to have continuously supported rainforest in refugia. The interface of tropical and temperate floras in part also explains the significant phylogenetic evenness and higher than expected phylogenetic diversity.


Asunto(s)
Biodiversidad , Plantas/clasificación , Plantas/genética , Australia , Sedimentos Geológicos/química , Perú , Filogenia , Bosque Lluvioso , Refugio de Fauna , Clima Tropical
7.
PLoS One ; 10(3): e0122164, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803607

RESUMEN

Australian rainforests have been fragmented due to past climatic changes and more recently landscape change as a result of clearing for agriculture and urban spread. The subtropical rainforests of South Eastern Queensland are significantly more fragmented than the tropical World Heritage listed northern rainforests and are subject to much greater human population pressures. The Australian rainforest flora is relatively taxonomically rich at the family level, but less so at the species level. Current methods to assess biodiversity based on species numbers fail to adequately capture this richness at higher taxonomic levels. We developed a DNA barcode library for the SE Queensland rainforest flora to support a methodology for biodiversity assessment that incorporates both taxonomic diversity and phylogenetic relationships. We placed our SE Queensland phylogeny based on a three marker DNA barcode within a larger international rainforest barcode library and used this to calculate phylogenetic diversity (PD). We compared phylo- diversity measures, species composition and richness and ecosystem diversity of the SE Queensland rainforest estate to identify which bio subregions contain the greatest rainforest biodiversity, subregion relationships and their level of protection. We identified areas of highest conservation priority. Diversity was not correlated with rainforest area in SE Queensland subregions but PD was correlated with both the percent of the subregion occupied by rainforest and the diversity of regional ecosystems (RE) present. The patterns of species diversity and phylogenetic diversity suggest a strong influence of historical biogeography. Some subregions contain significantly more PD than expected by chance, consistent with the concept of refugia, while others were significantly phylogenetically clustered, consistent with recent range expansions.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Código de Barras del ADN Taxonómico/métodos , Filogenia , Bosque Lluvioso , Secuencia de Bases , Análisis por Conglomerados , Geografía , Modelos Genéticos , Datos de Secuencia Molecular , Filogeografía/métodos , Reacción en Cadena de la Polimerasa , Queensland , Alineación de Secuencia , Análisis de Secuencia de ADN
8.
Biology (Basel) ; 1(3): 736-65, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-24832517

RESUMEN

Species endemic to mountains on oceanic islands are subject to a number of existing threats (in particular, invasive species) along with the impacts of a rapidly changing climate. The Lord Howe Island endemic palm Hedyscepe canterburyana is restricted to two mountains above 300 m altitude. Predation by the introduced Black Rat (Rattus rattus) is known to significantly reduce seedling recruitment. We examined the variation in Hedyscepe in terms of genetic variation, morphology, reproductive output and demographic structure, across an altitudinal gradient. We used demographic data to model population persistence under climate change predictions of upward range contraction incorporating long-term climatic records for Lord Howe Island. We also accounted for alternative levels of rat predation into the model to reflect management options for control. We found that Lord Howe Island is getting warmer and drier and quantified the degree of temperature change with altitude (0.9 °C per 100 m). For H. canterburyana, differences in development rates, population structure, reproductive output and population growth rate were identified between altitudes. In contrast, genetic variation was high and did not vary with altitude. There is no evidence of an upward range contraction as was predicted and recruitment was greatest at lower altitudes. Our models predicted slow population decline in the species and that the highest altitude populations are under greatest threat of extinction. Removal of rat predation would significantly enhance future persistence of this species.

9.
Photosynth Res ; 94(2-3): 423-36, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17680343

RESUMEN

Causes for rarity in plants are poorly understood. Graptophyllum reticulatum is an endangered endemic species, and it has three close relatives with different conservation status: the vulnerable G. ilicifolium, the rare G. excelsum, and the common G. spinigerum. Applied to the chlorophyll a fluorescence transient of leaves, the JIP test provides a Performance Index (PI) which quantifies the main steps in photosystem II (PSII) photochemistry including light energy absorption, excitation energy trapping, and conversion of excitation energy into electron flow. The PI is calculated from three components which depend on the reaction center density, the trapping efficiency, and the electron transport efficiency. PI was measured in the natural habitats of the four species and under artificially imposed environmental stresses in the glasshouse to determine whether conservation status was related to stress resilience. The results showed that soil type is unlikely to restrict the endangered G. reticulatum, vulnerable G. ilicifolium, or rare G. excelsum because PI was similar in plants grown in diverse soils in the glasshouse. Photoinhibition is likely to restrict the endangered G. reticulatum to shade habitats because PI was significantly reduced when plants were exposed to more than 15% ambient light in controlled experiments. Water availability may determine the location and distribution of the vulnerable G. ilicifolium and common G. spinigerum because PI was reduced more than 60% when plants were exposed to water stress. While the characteristics of their natural habitats correspond to and explain the physiological responses, there was no obvious relationship between conservation status and environmental resilience. PI can be used to monitor vigor and health of populations of plants in the natural habitat. In cultivation experiments PI responds to key environmental variables that affect the distribution of species with conservation significance.


Asunto(s)
Acanthaceae/metabolismo , Clorofila/metabolismo , Fluorescencia , Acanthaceae/crecimiento & desarrollo , Acanthaceae/efectos de la radiación , Clorofila/química , Transporte de Electrón/efectos de la radiación , Luz , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA