Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682839

RESUMEN

Whole-genome amplification is a crucial first step in nearly all single-cell genomic analyses, with the following steps focused on its products. Bias and variance caused by the whole-genome amplification process add numerous challenges to the world of single-cell genomics. Short tandem repeats are sensitive genomic markers used widely in population genetics, forensics, and retrospective lineage tracing. A previous evaluation of common whole-genome amplification targeting ~1000 non-autosomal short tandem repeat loci is extended here to ~12,000 loci across the entire genome via duplex molecular inversion probes. Other than its improved scale and reduced noise, this system detects an abundance of heterogeneous short tandem repeat loci, allowing the allelic balance to be reported. We show here that while the best overall yield is obtained using RepliG-SC, the maximum uniformity between alleles and reproducibility across cells are maximized by Ampli1, rendering it the best candidate for the comparative heterozygous analysis of single-cell genomes.


Asunto(s)
Genética de Población , Repeticiones de Microsatélite , Alelos , Repeticiones de Microsatélite/genética , Reproducibilidad de los Resultados , Estudios Retrospectivos
2.
Nucleic Acids Res ; 47(5): 2436-2445, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30698816

RESUMEN

Short tandem repeats (STRs) are polymorphic genomic loci valuable for various applications such as research, diagnostics and forensics. However, their polymorphic nature also introduces noise during in vitro amplification, making them difficult to analyze. Although it is possible to overcome stutter noise by using amplification-free library preparation, such protocols are presently incompatible with single cell analysis and with targeted-enrichment protocols. To address this challenge, we have designed a method for direct measurement of in vitro noise. Using a synthetic STR sequencing library, we have calibrated a Markov model for the prediction of stutter patterns at any amplification cycle. By employing this model, we have managed to genotype accurately cases of severe amplification bias, and biallelic STR signals, and validated our model for several high-fidelity PCR enzymes. Finally, we compared this model in the context of a naïve STR genotyping strategy against the state-of-the-art on a benchmark of single cells, demonstrating superior accuracy.


Asunto(s)
Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite/genética , Alelos , Genotipo , Humanos
3.
Genome Res ; 26(11): 1588-1599, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27558250

RESUMEN

Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective, and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage discovery.


Asunto(s)
Linaje de la Célula , Análisis de Secuencia de ADN/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Línea Celular Tumoral , Células Cultivadas , Humanos , Masculino , Microfluídica/métodos , Persona de Mediana Edad , Análisis de Secuencia de ADN/economía , Análisis de Secuencia de ADN/normas , Análisis de la Célula Individual/economía , Análisis de la Célula Individual/normas
4.
Nat Rev Genet ; 14(9): 618-30, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897237

RESUMEN

The unabated progress in next-generation sequencing technologies is fostering a wave of new genomics, epigenomics, transcriptomics and proteomics technologies. These sequencing-based technologies are increasingly being targeted to individual cells, which will allow many new and longstanding questions to be addressed. For example, single-cell genomics will help to uncover cell lineage relationships; single-cell transcriptomics will supplant the coarse notion of marker-based cell types; and single-cell epigenomics and proteomics will allow the functional states of individual cells to be analysed. These technologies will become integrated within a decade or so, enabling high-throughput, multi-dimensional analyses of individual cells that will produce detailed knowledge of the cell lineage trees of higher organisms, including humans. Such studies will have important implications for both basic biological research and medicine.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual , Animales , Separación Celular/métodos , Epigenómica , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteómica , Análisis de la Célula Individual/métodos
5.
Nucleic Acids Res ; 44(4): e35, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26481354

RESUMEN

Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development.


Asunto(s)
Clonación Molecular/métodos , ADN/genética , Biblioteca de Genes , Microfluídica/métodos , Sistema Libre de Células
6.
PLoS Comput Biol ; 12(6): e1004983, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27295404

RESUMEN

Advances in single-cell (SC) genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells, as determined by phylogenetic analysis of the somatic mutations harbored by each cell. Theoretically, complete and accurate knowledge of the genome of each cell of an individual can produce an extremely accurate cell lineage tree of that individual. However, the reality of SC genomics is that such complete and accurate knowledge would be wanting, in quality and in quantity, for the foreseeable future. In this paper we offer a framework for systematically exploring the feasibility of answering cell lineage questions based on SC somatic mutational analysis, as a function of SC genomics data quality and quantity. We take into consideration the current limitations of SC genomics in terms of mutation data quality, most notably amplification bias and allele dropouts (ADO), as well as cost, which puts practical limits on mutation data quantity obtained from each cell as well as on cell sample density. We do so by generating in silico cell lineage trees using a dedicated formal language, eSTG, and show how the ability to answer correctly a cell lineage question depends on the quality and quantity of the SC mutation data. The presented framework can serve as a baseline for the potential of current SC genomics to unravel cell lineage dynamics, as well as the potential contributions of future advancement, both biochemical and computational, for the task.


Asunto(s)
Linaje de la Célula/genética , Genómica/métodos , Modelos Genéticos , Análisis de la Célula Individual/métodos , Algoritmos , Simulación por Computador , Bases de Datos Genéticas , Humanos , Mutación/genética
7.
PLoS Genet ; 10(6): e1004407, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24968317

RESUMEN

Introns are key regulators of eukaryotic gene expression and present a potentially powerful tool for the design of synthetic eukaryotic gene expression systems. However, intronic control over gene expression is governed by a multitude of complex, incompletely understood, regulatory mechanisms. Despite this lack of detailed mechanistic understanding, here we show how a relatively simple model enables accurate and predictable tuning of synthetic gene expression system in yeast using several predictive intron features such as transcript folding and sequence motifs. Using only natural Saccharomyces cerevisiae introns as regulators, we demonstrate fine and accurate control over gene expression spanning a 100 fold expression range. These results broaden the engineering toolbox of synthetic gene expression systems and provide a framework in which precise and robust tuning of gene expression is accomplished.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Sintéticos/genética , Intrones/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas Bacterianas , Ingeniería Genética , Proteínas Luminiscentes , Saccharomyces cerevisiae
8.
BMC Bioinformatics ; 17(1): 187, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27117841

RESUMEN

BACKGROUND: We have previously presented a formal language for describing population dynamics based on environment-dependent Stochastic Tree Grammars (eSTG). The language captures in broad terms the effect of the changing environment while abstracting away details on interaction among individuals. An eSTG program consists of a set of stochastic tree grammar transition rules that are context-free. Transition rule probabilities and rates, however, can depend on global parameters such as population size, generation count and elapsed time. In addition, each individual may have an internal state, which can change during transitions. RESULTS: This paper presents eSTGt (eSTG tool), an eSTG programming and simulation environment. When executing a program, the tool generates the corresponding lineage trees as well as the internal states values, which can then be analyzed either through the tool's GUI or using MATLAB's command-line environment. CONCLUSIONS: The presented tool allows researchers to use existing biological knowledge in order to model the dynamics of a developmental process and analyze its behavior throughout the historical events. Simulated lineage trees can be used to validate various hypotheses in silico and to predict the behavior of dynamical systems under various conditions. Written under MATLAB environment, the tool also enables to easily integrate the output data within the user's downstream analysis.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Modelos Teóricos , Dinámica Poblacional , Programas Informáticos , Evolución Biológica , Humanos
9.
RNA Biol ; 12(9): 972-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26176266

RESUMEN

Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5' transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5'UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5'end can modulate protein levels up to 160%-300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple rules for engineering synthetic gene expression in eukaryotes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Transcripción Genética , Regiones no Traducidas 5' , Composición de Base , Codón , Expresión Génica , Biblioteca de Genes , Genes Reporteros , Humanos , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Mutación Silenciosa
10.
PLoS Genet ; 8(2): e1002477, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22383887

RESUMEN

Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.


Asunto(s)
Envejecimiento , Linaje de la Célula/genética , Células Germinativas , Envejecimiento/genética , Animales , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Mutación de Línea Germinal , Células Madre Mesenquimatosas/citología , Ratones , Oogénesis/genética , Especificidad de Órganos , Ovario/citología , Ovario/fisiología , Ovulación
11.
BMC Bioinformatics ; 15: 249, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25047682

RESUMEN

BACKGROUND: Precise description of the dynamics of biological processes would enable the mathematical analysis and computational simulation of complex biological phenomena. Languages such as Chemical Reaction Networks and Process Algebras cater for the detailed description of interactions among individuals and for the simulation and analysis of ensuing behaviors of populations. However, often knowledge of such interactions is lacking or not available. Yet complete oblivion to the environment would make the description of any biological process vacuous. Here we present a language for describing population dynamics that abstracts away detailed interaction among individuals, yet captures in broad terms the effect of the changing environment, based on environment-dependent Stochastic Tree Grammars (eSTG). It is comprised of a set of stochastic tree grammar transition rules, which are context-free and as such abstract away specific interactions among individuals. Transition rule probabilities and rates, however, can depend on global parameters such as population size, generation count, and elapsed time. RESULTS: We show that eSTGs conveniently describe population dynamics at multiple levels including cellular dynamics, tissue development and niches of organisms. Notably, we show the utilization of eSTG for cases in which the dynamics is regulated by environmental factors, which affect the fate and rate of decisions of the different species. eSTGs are lineage grammars, in the sense that execution of an eSTG program generates the corresponding lineage trees, which can be used to analyze the evolutionary and developmental history of the biological system under investigation. These lineage trees contain a representation of the entire events history of the system, including the dynamics that led to the existing as well as to the extinct individuals. CONCLUSIONS: We conclude that our suggested formalism can be used to easily specify, simulate and analyze complex biological systems, and supports modular description of local biological dynamics that can be later used as "black boxes" in a larger scope, thus enabling a gradual and hierarchical definition and simulation of complex biological systems. The simple, yet robust formalism enables to target a broad class of stochastic dynamic behaviors, especially those that can be modeled using global environmental feedback regulation rather than direct interaction between individuals.


Asunto(s)
Biología Computacional/métodos , Modelos Biológicos , Dinámica Poblacional , Programas Informáticos , Evolución Biológica , Ambiente , Extinción Biológica
12.
Blood ; 120(3): 603-12, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-22645183

RESUMEN

Human cancers display substantial intratumoral genetic heterogeneity, which facilitates tumor survival under changing microenvironmental conditions. Tumor substructure and its effect on disease progression and relapse are incompletely understood. In the present study, a high-throughput method that uses neutral somatic mutations accumulated in individual cells to reconstruct cell lineage trees was applied to hundreds of cells of human acute leukemia harvested from multiple patients at diagnosis and at relapse. The reconstructed cell lineage trees of patients with acute myeloid leukemia showed that leukemia cells at relapse were shallow (divide rarely) compared with cells at diagnosis and were closely related to their stem cell subpopulation, implying that in these instances relapse might have originated from rarely dividing stem cells. In contrast, among patients with acute lymphoid leukemia, no differences in cell depth were observed between diagnosis and relapse. In one case of chronic myeloid leukemia, at blast crisis, most of the cells at relapse were mismatch-repair deficient. In almost all leukemia cases, > 1 lineage was observed at relapse, indicating that diverse mechanisms can promote relapse in the same patient. In conclusion, diverse relapse mechanisms can be observed by systematic reconstruction of cell lineage trees of patients with leukemia.


Asunto(s)
Heterogeneidad Genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Inestabilidad de Microsatélites , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Antineoplásicos/uso terapéutico , Biopsia , Crisis Blástica/tratamiento farmacológico , Crisis Blástica/genética , Crisis Blástica/patología , División Celular/efectos de los fármacos , División Celular/genética , Linaje de la Célula/genética , Resistencia a Antineoplásicos/genética , Citometría de Flujo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Recurrencia , Microambiente Tumoral/genética
13.
PLoS Comput Biol ; 9(11): e1003297, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244121

RESUMEN

Organism cells proliferate and die to build, maintain, renew and repair it. The cellular history of an organism up to any point in time can be captured by a cell lineage tree in which vertices represent all organism cells, past and present, and directed edges represent progeny relations among them. The root represents the fertilized egg, and the leaves represent extant and dead cells. Somatic mutations accumulated during cell division endow each organism cell with a genomic signature that is unique with a very high probability. Distances between such genomic signatures can be used to reconstruct an organism's cell lineage tree. Cell populations possess unique features that are absent or rare in organism populations (e.g., the presence of stem cells and a small number of generations since the zygote) and do not undergo sexual reproduction, hence the reconstruction of cell lineage trees calls for careful examination and adaptation of the standard tools of population genetics. Our lab developed a method for reconstructing cell lineage trees by examining only mutations in highly variable microsatellite loci (MS, also called short tandem repeats, STR). In this study we use experimental data on somatic mutations in MS of individual cells in human and mice in order to validate and quantify the utility of known lineage tree reconstruction algorithms in this context. We employed extensive measurements of somatic mutations in individual cells which were isolated from healthy and diseased tissues of mice and humans. The validation was done by analyzing the ability to infer known and clear biological scenarios. In general, we found that if the biological scenario is simple, almost all algorithms tested can infer it. Another somewhat surprising conclusion is that the best algorithm among those tested is Neighbor Joining where the distance measure used is normalized absolute distance. We include our full dataset in Tables S1, S2, S3, S4, S5 to enable further analysis of this data by others.


Asunto(s)
Algoritmos , Linaje de la Célula/genética , Repeticiones de Microsatélite/genética , Mutación/genética , Filogenia , Animales , Células de la Médula Ósea , Células Cultivadas , Análisis por Conglomerados , Biología Computacional/métodos , Simulación por Computador , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Modelos Genéticos
14.
Nucleic Acids Res ; 40(8): 3378-91, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22210889

RESUMEN

The brain is a large and complex network of neurons. Specific neuronal connectivity is thought to be based on the combinatorial expression of the 52 protocadherins (Pcdh) membrane adhesion proteins, whereby each neuron expresses only a specific subset. Pcdh genes are arranged in tandem, in a cluster of three families: Pcdhα, Pcdhß and Pcdhγ. The expression of each Pcdh gene is regulated by a promoter that has a regulatory conserved sequence element (CSE), common to all 52 genes. The mechanism and factors controlling individual Pcdh gene expression are currently unknown. Here we show that the promoter of each Pcdh gene contains a gene-specific conserved control region, termed specific sequence element (SSE), located adjacent and upstream to the CSE and activates transcription together with the CSE. We purified the complex that specifically binds the SSE-CSE region and identified the CCTC binding-factor (CTCF) as a key molecule that binds and activates Pcdh promoters. Our findings point to CTCF as a factor essential for Pcdh expression and probably governing neuronal connectivity.


Asunto(s)
Cadherinas/genética , Familia de Multigenes , Regiones Promotoras Genéticas , Proteínas Represoras/fisiología , Secuencia de Bases , Factor de Unión a CCCTC , Cadherinas/biosíntesis , Línea Celular , Secuencia Conservada , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Proteínas Represoras/metabolismo , Transcripción Genética
15.
PLoS Genet ; 7(7): e1002192, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21829376

RESUMEN

Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems.


Asunto(s)
Linaje de la Célula , Colon/citología , Células Madre/citología , Animales , Linfocitos B/metabolismo , Linaje de la Célula/genética , Colon/metabolismo , Epitelio/metabolismo , Estudio de Asociación del Genoma Completo , Células Madre Hematopoyéticas , Células Secretoras de Insulina/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/citología , Páncreas/metabolismo , Células Madre/metabolismo
16.
Genomics ; 102(4): 419-29, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23726901

RESUMEN

Accurate and efficient gene expression requires that protein translation initiates from mRNA transcripts with high fidelity. At the same time, indiscriminate initiation of translation from multiple ATG start-sites per transcript has been demonstrated, raising fundamental questions regarding the rate and rationale governing alternative translation initiation. We devised a sensitive fluorescent reporter assay for monitoring alternative translation initiation. To demonstrate it, we map the translation initiation landscape of a Saccharomyces cerevisiae gene (RMD1) with a typical ATG sequence context profile. We found that up to 3%-5% of translation initiation events occur from alternative out-of-frame start codons downstream of the main ATG. Initiation from these codons follows the ribosome scanning model: initiation rates from different start sites are determined by ATG order, rather than their context strength. Genomic analysis of S. cerevisiae further supports the scanning model: ATG codons downstream rather than upstream of the main ATG tend to have higher context scores.


Asunto(s)
Codón Iniciador , Sistema de Lectura Ribosómico , Genes Fúngicos , Iniciación de la Cadena Peptídica Traduccional , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Science ; 381(6659): 715, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590362

RESUMEN

Over the past 30 weeks, Israel has been undergoing an upheaval marked by unprecedented attacks by the government on the independence of its judiciary, attorney general, government legal advisers, police, military, public broadcasting, and religious freedom. This assault on democratic institutions and principles is an imminent threat to Israeli academia, which relies on a solid democratic foundation. In response, universities, academics, and students have emerged as key proponents of ongoing protests under the banner, "No democracy, no academia."

18.
Nano Lett ; 11(7): 2989-96, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21671655

RESUMEN

The promise of biomolecular computers is their ability to interact with naturally occurring biomolecules, enabling in the future the development of context-dependent programmable drugs. Here we show a context-sensing mechanism of a biomolecular automaton that can simultaneously sense different types of molecules, allowing future integration of biomedical knowledge on a broad range of molecular disease symptoms in the decision of a biomolecular computer to release a drug molecule.


Asunto(s)
Biología Computacional , Simulación por Computador , Proteínas de Unión al ADN/análisis , ADN/análisis , ARN/análisis , Programas Informáticos , Nanotecnología , Tamaño de la Partícula , Propiedades de Superficie
20.
Proc Natl Acad Sci U S A ; 105(27): 9278-83, 2008 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-18583478

RESUMEN

The nervous system contains trillions of neurons, each forming thousands of synaptic connections. It has been suggested that this complex connectivity is determined by a synaptic "adhesive code," where connections are dictated by a variable set of cell surface proteins, combinations of which form neuronal addresses. The estimated number of neuronal addresses is orders of magnitude smaller than the number of neurons. Here, we show that the limited number of addresses dictates constraints on the possible neuronal network topologies. We show that to encode arbitrary networks, in which each neuron can potentially connect to any other neuron, the number of neuronal addresses needed scales linearly with network size. In contrast, the number of addresses needed to encode the wiring of geometric networks grows only as the square root of network size. The more efficient encoding in geometric networks is achieved through the reutilization of the same addresses in physically independent portions of the network. We also find that ordered geometric networks, in which the same connectivity patterns are iterated throughout the network, further reduce the required number of addresses. We demonstrate our findings using simulated networks and the C. elegans neuronal network. Geometric neuronal connectivity with recurring connectivity patterns have been suggested to confer an evolutionary advantage by saving biochemical resources on the one hand and reutilizing functionally efficient neuronal circuits. Our study suggests an additional advantage of these prominent topological features--the facilitation of the ability to genetically encode neuronal networks given constraints on the number of addresses.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Caenorhabditis elegans/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA