Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Neurol ; 30(9): 2919-2945, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37209042

RESUMEN

BACKGROUND: Since the results of previous studies regarding the safety and efficacy of miglustat in GM2 gangliosidosis (GM2g) were inconsistent, we aimed to assess miglustat therapy in GM2g patients. METHODS: This study followed the latest version of PRISMA. We included the observational or interventional studies reporting GM2g patients under miglustat therapy by searching PubMed, Web of Science, and Scopus. Data extracted included the natural history of individual patient data, as well as the safety and efficacy of miglustat in GM2g patients. The quality assessment was performed using the Joanna Briggs Institute Critical Appraisal checklist. RESULTS: A total of 1023 records were identified and reduced to 621 after removing duplicates. After screening and applying the eligibility criteria, 10 articles and 2 abstracts met the inclusion criteria. Overall, the studies represented 54 patients with GM2g under treatment with miglustat and 22 patients with GM2g in the control group. Among patients with available data, 14 and 54 have been diagnosed with Sandhoff disease and Tay-Sachs disease, respectively. Patients included in this review consisted of 23 infantile, 4 late-infantile, 18 juvenile, and 31 adult-onset GM2g. CONCLUSIONS: Although miglustat should not be considered a definite treatment for GM2g, it appears that patients, particularly those with infantile or late-infantile GM2g, could benefit from miglustat therapy to some extent. We also make some suggestions regarding future studies presenting their findings in a standard format to facilitate pooling the available data in such rare diseases for a more comprehensive conclusion.


Asunto(s)
Gangliosidosis GM2 , Adulto , Humanos , Gangliosidosis GM2/tratamiento farmacológico , 1-Desoxinojirimicina/efectos adversos
2.
J Dent ; 150: 105331, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39216818

RESUMEN

Several nanomaterials have been recently used to overcome various challenges in the dental domain. Bioactive glasses, a class of bioceramics, with their outstanding properties including but not limited to their strong biocompatibility, antibacterial characteristics, and bioactivity inside the body's internal milieu have made them valuable biomaterials in a variety of dental domains. The utilization of nanomaterials has improved the performance of teeth, and the incorporation of bioactive glasses has the field of dentistry at an unsurpassed level in different categories such as esthetic and restorative dentistry, periodontics and dental implants, orthodontics, and endodontics. The current study discusses the most recent developments of the bioactive glasses' creation and implementation for dental applications, as well as the challenges and opportunities still facing the field. This work provides an overview of the current obstacles and potential future prospects for bioactive glasses-based nanocomposites to improve their dental uses. It also emphasizes the great potential synergistic effects of bioactive glasses used with other nanomaterials for dental applications.

3.
J Funct Biomater ; 15(9)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39330233

RESUMEN

Bioactive glasses (BGs) have attracted significant attention in the biomaterials field due to their ability to promote soft and hard tissue regeneration and their potential for various clinical applications. BGs offer enriched features through the integration of different therapeutic inorganic ions within their composition. These ions can trigger specific responses in the body conducive to a battery of applications. For example, zinc, a vital trace element, plays a role in numerous physiological processes within the human body. By incorporating zinc, BGs can inhibit bacterial growth, exert anti-inflammatory effects, and modify bioactivity, promoting better integration with surrounding tissues when used in scaffolds for tissue regeneration. This article reviews recent developments in zinc-containing BGs (ZBGs), focusing on their synthesis, physicochemical, and biological properties. ZBGs represent a significant advancement in applications extending beyond bone regeneration. Overall, their biological roles hold promise for various applications, such as bone tissue engineering, wound healing, and biomedical coatings. Ongoing research continues to explore the potential benefits of ZBGs and to optimize their properties for diverse clinical applications.

4.
Sci Rep ; 14(1): 18117, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103444

RESUMEN

Diabetic nephropathy, characterized by inflammation and oxidative stress, poses a management challenge. This study investigates the effect of Polygonum hyrcanicum extract on diabetic nephropathy in alloxan-induced diabetic mice. In this experimental animal study, the P. hyrcanicum extract was prepared using continuous macerations. Thirty male Albino mice, divided into five groups, were induced with alloxan-induced diabetes. They received intraperitoneal injections of the plant extract (100 and 200 mg/kg) and metformin (300 mg/kg) for four weeks. Kidney and blood samples were collected to assess protein carbonyl, glutathione, lipid peroxidation, TNF-α and IL-6 levels. The amount of total flavonoid and phenolic content in the hydroalcoholic extract of P. hyrcanicum were 7.5 ± 0.3 mg of quercetin and 88.2 ± 1.3 mg gallic acid per gram of extract respectively. The antioxidant activity level of the hydroalcoholic extract was determined to be 1.78 ± 0.51 mM equivalent per gram of extract. Alloxan administration resulted in a significant reduction in glutathione levels and a significant increase in protein carbonyl, lipid peroxidation, TNF-α, and IL-6 levels. Hydroalcoholic extract of P. hyrcanicum effectively reduced oxidative stress markers and inflammatory cytokines (TNF-α, IL-6), indicating its potential in mitigating diabetic nephropathy. However, no significant difference in efficacy was observed between the 100 mg/kg and 200 mg/kg doses in terms of reducing these toxicities.


Asunto(s)
Antioxidantes , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Estrés Oxidativo , Extractos Vegetales , Polygonum , Animales , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Ratones , Masculino , Antioxidantes/farmacología , Polygonum/química , Aloxano , Peroxidación de Lípido/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Glutatión/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Interleucina-6/metabolismo , Interleucina-6/sangre
5.
Materials (Basel) ; 17(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39124528

RESUMEN

The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including crystallite size, lattice parameters, ionic and electronic conductivity, sinterability, and mechanical strength. This study proposes cobalt-iron-substituted gadolinium-doped ceria (CoxFe1-xGDC) as an innovative, nickel-free anode composite for developing ceramic fuel cells. A new co-precipitation technique using ammonium tartrate as the precipitant in a multi-cationic solution with Co2+, Gd3+, Fe3+, and Ce3+ ions was utilized. The physicochemical and morphological characteristics of the synthesized samples were systematically analysed using a comprehensive set of techniques, including DSC/TGA for a thermal analysis, XRD for a crystallographic analysis, SEM/EDX for a morphological and elemental analysis, FT-IR for a chemical bonding analysis, and Raman spectroscopy for a vibrational analysis. The morphological analysis, SEM, showed the formation of nanoparticles (≤15 nm), which corresponded well with the crystal size determined by the XRD analysis, which was within the range of ≤10 nm. The fabrication of single SOFC bilayers occurred within an electrolyte-supported structure, with the use of the GDC as the electrolyte layer and the CoO-Fe2O3/GDC composite as the anode. SEM imaging and the EIS analysis were utilized to examine the fabricated symmetrical cells.

6.
Int J Biol Macromol ; 258(Pt 1): 128917, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134992

RESUMEN

Critical sized craniofacial defects are among the most challenging bone defects to repair, due to the anatomical complexity and aesthetic importance. In this study, a polylactic acid/hardystonite-graphene oxide (PLA/HTGO) scaffold was fabricated through 3D printing. In order to upgrade the 3D printed scaffold to a highly porous scaffold, its channels were filled with pectin-quaternized chitosan (Pec-QCs) polyelectrolyte solution containing 0 or 20 mg/mL of simvastatin (Sim) and then freeze-dried. These scaffolds were named FD and FD-Sim, respectively. Also, similar PLA/HTGO scaffolds were prepared and dip coated with Pec-QCs solution containing 0 or 20 mg/mL of Sim and were named DC and DC-Sim, respectively. The formation of macro/microporous structure was confirmed by morphological investigations. The release of Sim from DC-Sim and FD-Sim scaffolds after 28 days was measured as 77.40 ± 5.25 and 86.02 ± 3.63 %, respectively. Cytocompatibility assessments showed that MG-63 cells had the highest proliferation, attachment and spread on the Sim containing scaffolds, especially FD-Sim. In vivo studies on a rat calvarial defect model revealed that an almost complete recovery occurred in the group treated with FD-Sim scaffold after 8 weeks and the defect was filled with newly formed bone. The results of this study acknowledge that the FD-Sim scaffold can be a perfect candidate for calvarial defect repair.


Asunto(s)
Quitosano , Grafito , Simvastatina , Ratas , Animales , Andamios del Tejido/química , Polielectrolitos , Regeneración Ósea , Osteogénesis , Poliésteres , Impresión Tridimensional , Ingeniería de Tejidos
7.
Int J Biol Macromol ; 258(Pt 1): 128482, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042326

RESUMEN

Utilizing electrospun nanofibers and microneedle arrays in wound regeneration has been practiced for several years. Researchers have recently asserted that using multiple methods concurrently might enhance efficiency, despite the inherent strengths and weaknesses of each individual approach. The combination of microneedle arrays with electrospun nanofibers has the potential to create a drug delivery system and wound healing method that offer improved efficiency and accuracy in targeting. The use of microneedles with nanofibers allows for precise administration of pharmaceuticals due to the microneedles' capacity to pierce the skin and the nanofibers' role as a drug reservoir, resulting in a progressive release of drugs over a certain period of time. Electrospun nanofibers have the ability to imitate the extracellular matrix and provide a framework for cellular growth and tissue rejuvenation, while microneedle arrays show potential for enhancing tissue regeneration and enhancing the efficacy of wound healing. The integration of electrospun nanofibers with microneedle arrays may be customized to effectively tackle particular obstacles in the fields of wound healing and drug delivery. However, some issues must be addressed before this paradigm may be fully integrated into clinical settings, including but not limited to ensuring the safety and sterilization of these products for transdermal use, optimizing manufacturing methods and characterization of developed products, larger-scale production, optimizing storage conditions, and evaluating the inclusion of multiple therapeutic and antimicrobial agents to increase the synergistic effects in the wound healing process. This research examines the combination of microneedle arrays with electrospun nanofibers to enhance the delivery of drugs and promote wound healing. It explores various kinds of microneedle arrays, the materials and processes used, and current developments in their integration with electrospun nanofibers.


Asunto(s)
Nanofibras , Nanofibras/uso terapéutico , Piel , Cicatrización de Heridas , Polisacáridos/farmacología , Sistemas de Liberación de Medicamentos/métodos
8.
Front Bioeng Biotechnol ; 12: 1417440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301173

RESUMEN

Bone structures facilitate the regeneration and repair of bone tissue in regions where it has been damaged or destroyed, either temporarily or permanently. Therefore, the bone's fatigue strength and durability are crucial to its efficacy and longevity. Several variables, such as the construct's material qualities, design, and production procedure, loading and unloading cycles, and physiological conditions influence the endurance life of bone constructs. Metals, ceramics, and polymers are all routinely utilized to create bone substitutes, and each of these materials has unique features that might affect the fatigue strength and endurance life of the final product. The mechanical performance and capacity to promote bone tissue regeneration may be affected by the scaffold's design, porosity, and pore size. Researchers employ mechanical testing under cyclic loading circumstances as one example of an experimental approach used to assess bone construction endurance. These analyses can give us important information about the stress-strain behavior, resistance to multiple loading cycles, and fatigue strength of the new structure. Predicting the endurance life of the developed construct may also be possible with the use of simulations and numerical analyses. Hence, in order to create reliable and efficient constructs for bone tissue engineering, it is crucial to understand their fatigue strength and durability. The purpose of this study is to analyze the effective parameters for fatigue strength of bone structures and to gather the models and evaluations utilized in endurance life assessments.

9.
Int J Biol Macromol ; 280(Pt 1): 135691, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284468

RESUMEN

Cancer remains a major global health concern, often challenging traditional treatments. Natural compounds like fungal polysaccharides have gained attention for their immune-modulatory properties. This study evaluates the phytochemical properties of the n-hexane fraction of Trichaptum biforme and explores its immune-enhancing effects. The study involved isolating three sterol derivatives using column chromatography and purifying polysaccharides from T. biforme (TBP) through hot aqueous extraction. TBP content was quantified via the phenol­sulfuric acid method, and antioxidant activity was assessed using DPPH and FRAP assays. Cytotoxicity of TBP on THP-1 cells and the impact on IL-1ß and TNF-α secretion were evaluated through the XTT assay. Flow cytometry and ELISA assessed cytotoxic activity and IFN-γ secretion in NK cells. The compound 9, 11-Dehydroergosterol peroxide was identified for the first time in T. biforme. The total polysaccharide content was 78.18 ± 0.81 %. The TBP significantly increased IL-1ß and TNF-α secretion from THP-1 cells at concentrations of 10 and 320 µg/mL (p < 0.01). Treatment of NK cells with the extract (320 µg/mL) and IL-2 (100 units/mL) significantly enhanced cytotoxic activity and IFN-γ secretion compared to the control group (p < 0.01). These findings suggest that TBP holds promise as a candidate for bolstering anticancer immune responses.

10.
Int J Biol Macromol ; 255: 128198, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992930

RESUMEN

Multi-layered wound dressings can closely mimic the hierarchical structure of the skin. Herein, a double-layer dressing material is fabricated through electrospinning, comprised of a nanofibrous structure as a healing-support layer or the bottom layer (BL) containing pectin (Pec), soy protein isolate (SPI), pomegranate peel extract (P), and a cellulose (Cel) microfiber layer as a protective/monitoring layer or top layer (TL). The formation of a fine bilayer structure was confirmed using scanning electron microscopy. Cel/Pec-SPI-P dressing showed a 60.05 % weight loss during 7 days of immersion in phosphate buffered solution. The ultimate tensile strength, elastic modulus, and elongation at break for different dressings were within the range of 3.14-3.57 MPa, 32.26-36.58 MPa, and 59.04-63.19 %, respectively. The release of SPI and phenolic compounds from dressings were measured and their antibacterial activity was evaluated. The fabricated dressing was non-cytotoxic following exposure to human keratinocyte cells. The Cel/Pec-SPI-P dressing exhibited excellent cell adhesion and migration as well as angiogenesis. More importantly, in vivo experiments on Cel/Pec-SPI-P dressings showed faster epidermal layer formation, blood vessel generation, collagen deposition, and a faster wound healing rate. Overall, it is anticipated that the Cel/Pec-SPI-P bilayer dressing facilitates wound treatment and can be a promising approach for clinical use.


Asunto(s)
Nanofibras , Granada (Fruta) , Humanos , Nanofibras/química , Proteínas de Soja/química , Celulosa/química , Pectinas/farmacología , Cicatrización de Heridas , Antibacterianos/uso terapéutico , Vendajes , Aceleración
11.
Heliyon ; 10(19): e38497, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39391491

RESUMEN

Wound healing is a sophisticated process for which various treatment methods have been developed. Bioceramics with the ability to release inorganic ions in biological environments play a crucial role in cellular metabolism and exhibit bactericidal activity, contributing to numerous physiological processes. Their multifaceted roles in biological systems highlight their significance. The release of different metallic ions from bioceramics enables the repair of both hard and soft tissues. These ions may be effective in cell motility, proliferation, differentiation, adhesion, angiogenesis, and antibiosis. Unlike conventional medications, the bioactivity and antibacterial properties of bioceramics are typically not associated with side effects or bacterial resistance. Bioceramics are commonly recognized for their capcity to facilitate the healing of hard tissues due to their exceptional mechanical properties. In this review, we first explore wound treatment and its prevalent methods, and subsequently, we discuss the application of three primary categories of bioceramics-oxide ceramics, silicate-based ceramics, and calcium-phosphate ceramics-in the context of wound treatment. This review introduces bioceramics as a cost-effective and efficient alternative for wound repair. Our aim is to inspire researchers to incorporate bioceramics with other biomaterials to achieve enhanced, economical, expedited, and safer wound healing.

12.
Int J Biol Macromol ; 265(Pt 1): 130954, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499125

RESUMEN

Designing multifunctional wound dressings is a prerequisite to prevent infection and stimulate healing. In this study, a bilayer scaffold (BS) with a top layer (TL) comprising 3D printed pectin/polyacrylic acid/platelet rich fibrin hydrogel (Pec/PAA/PRF) and a bottom nanofibrous layer (NL) containing Pec/PAA/simvastatin (SIM) was produced. The biodegradable and biocompatible polymers Pec and PAA were cross-linked to form hydrogels via Ca2+ activation through galacturonate linkage and chelation, respectively. PRF as an autologous growth factor (GF) source and SIM together augmented angiogenesis and neovascularization. Because of 3D printing, the BS possessed a uniform distribution of PRF in TL and an average fiber diameter of 96.71 ± 18.14 nm was obtained in NL. The Young's modulus of BS was recorded as 6.02 ± 0.31 MPa and its elongation at break was measured as 30.16 ± 2.70 %. The wound dressing gradually released growth factors over 7 days of investigation. Furthermore, the BS significantly outperformed other groups in increasing cell viability and in vivo wound closure rate (95.80 ± 3.47 % after 14 days). Wounds covered with BS healed faster with more collagen deposition and re-epithelialization. The results demonstrate that the BS can be a potential remedy for skin tissue regeneration.


Asunto(s)
Fibrina Rica en Plaquetas , Simvastatina/farmacología , Simvastatina/metabolismo , Pectinas/farmacología , Pectinas/metabolismo , Piel/metabolismo , Impresión Tridimensional
13.
Int J Pharm ; 653: 123931, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38387821

RESUMEN

Despite the advances in medicine, wound healing is still challenging and piques the interest of biomedical engineers to design effective wound dressings using natural and artificial polymers. In present study, coaxial electrospinning was employed to fabricate core-shell nanofiber-based wound dressing, with core composed of polyacrylamide (PAAm) and shell comprising 0.5 % solution of L-Arginine (L-Arg) in aloe vera and keratin (AloKr). Aloe vera and keratin were added as natural polymers to promote angiogenesis, reduce inflammation, and provide antibacterial activity, whereas PAAm in core was used to improve the tensile properties of the wound dressing. Moreover, L-Arg was incorporated in shell to promote angiogenesis and collagen synthesis. The fiber diameter of PAAm/(AloKr/L-Arg) core-shell fibers was (93.33 ± 35.11 nm) with finer and straighter fibers and higher water holding capacity due to increased surface area to volume ratio. In terms of tensile properties, the PAAm/(AloKr/L-Arg) core-shell nanofibers with tensile strength and elastic modulus of 2.84 ± 0.27 MPa and 62.15 ± 5.32 MPa, respectively, showed the best mechanical performance compared to other nanofibers tested. Furthermore, PAAm/(AloKr/L-Arg) exhibited the highest L-Arg release (87.62 ± 3.02 %) and viability of L929 cells in vitro compared to other groups. In addition, the highest rate of in vivo full thickness wound healing was observed in PAAm/(AloKr/L-Arg) group compared to other groups. It significantly enhanced the angiogenesis, neovascularization, and cell proliferation. The prepared PAAm/(AloKr/L-Arg) core-shell nanofibrous dressing could be promising for full-thickness wound healing.


Asunto(s)
Aloe , Nanofibras , Angiogénesis , Cicatrización de Heridas , Polímeros , Arginina , Queratinas
14.
J Biomater Sci Polym Ed ; 35(6): 823-850, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38300323

RESUMEN

Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.


Asunto(s)
Cerámica , Grafito , Nanocompuestos , Polimetil Metacrilato , Silicatos , Humanos , Ratas , Animales , Cementos para Huesos , Vancomicina/farmacología , Osteogénesis , Ensayo de Materiales
15.
Heliyon ; 9(11): e21621, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954292

RESUMEN

Among many types of wearable sensors, MOFs-based wearable sensors have recently been explored in both commercialization and research. There has been much effort in various aspects of the development of MOF-based wearable sensors including but not limited to miniaturization, size control, safety, improvements in conformal and flexible features, improvements in the analytical performance and long-term storage of these devices. Recent progress in the design and deployment of MOFs-based wearable sensors are covered in this paper, as are the remaining obstacles and prospects. This work also highlights the enormous potential for synergistic effects of MOFs used in combination with other nanomaterials for healthcare applications and raise attention toward the economic aspect and market diffusion of MOFs-based wearable sensors.

16.
Biomed Pharmacother ; 165: 115078, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37390707

RESUMEN

Physical exercise has beneficial effects on adult hippocampal neurogenesis (AHN) and cognitive processes, including learning. Although it is not known if anaerobic resistance training and high-intensity interval training, which involve alternating brief bouts of highly intense anaerobic activity with rest periods, have comparable effects on AHN. Also, while less thoroughly investigated, individual genetic diversity in the overall response to physical activity is likely to play a key role in the effects of exercise on AHN. Physical exercise has been shown to improve health on average, although the benefits may vary from person to person, perhaps due to genetic differences. Maximal aerobic capacity and metabolic health may improve significantly with aerobic exercise for some people, while the same amount of training may have little effect on others. This review discusses the AHN's capability for peripheral nervous system (PNS) regeneration and central nervous system (CNS) control via physical exercise. Exercise neurogenicity, effective genes, growth factors, and the neurotrophic factors involved in PNS regeneration and CNS control were discussed. Also, some disorders that could be affected by AHN and physical exercise are summarized.


Asunto(s)
Ejercicio Físico , Neurogénesis , Humanos , Adulto , Neurogénesis/fisiología , Regeneración Nerviosa , Sistema Nervioso Central , Hipocampo/metabolismo
17.
World J Pediatr ; 19(4): 356-365, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36484872

RESUMEN

BACKGROUND: Recently, beneficial effects of probiotics and/or prebiotics on cardio-metabolic risk factors in adults have been shown. However, existing evidence has not been fully established for pediatric age groups. This study aimed to assess the effect of synbiotic on anthropometric indices and body composition in overweight or obese children and adolescents. METHODS: This randomized double-blind, placebo-controlled trial was conducted among 60 participants aged 8-18 years with a body mass index (BMI) equal to or higher than the 85th percentile. Participants were randomly divided into two groups that received either a synbiotic capsule containing 6 × 109 colony forming units (CFU) Lactobacillus coagulans SC-208, 6 × 109 CFU Lactobacillus indicus HU36 and fructooligosaccharide as a prebiotic (n = 30) or a placebo (n = 30) twice a day for eight weeks. Anthropometric indices and body composition were measured at baseline and after the intervention. RESULTS: The mean (standard deviation, SD) age was 11.07 (2.00) years and 11.23 (2.37) years for the placebo and synbiotic groups, respectively (P = 0.770). The waist-height ratio (WHtR) decreased significantly at the end of the intervention in comparison with baseline in the synbiotic group (0.54 ± 0.05 vs. 0.55 ± 0.05, P = 0.05). No significant changes were demonstrated in other anthropometric indices or body composition between groups. CONCLUSIONS: Synbiotic supplementation might be associated with a reduction in WHtR. There were no significant changes in other anthropometric indices or body composition.


Asunto(s)
Obesidad Infantil , Probióticos , Simbióticos , Adulto , Humanos , Niño , Adolescente , Sobrepeso/terapia , Obesidad Infantil/terapia , Probióticos/uso terapéutico , Prebióticos , Método Doble Ciego , Composición Corporal
18.
Int J Pharm ; 645: 123357, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37647978

RESUMEN

A multi-layered scaffold can mimic the hierarchical structure of the skin, accelerate the wound healing, and protect the skin against contamination and infection. In this study, a three-layered (3L) scaffold was manufactured through a combination of 3D printing and electrospinning technique. A top layer of polyurethane (PU) nanofibrous coating for the prevention of micro-organism penetration was created through electrospining. The middle layer was prepared through the 3D printing of Pluronic F127-quaternized chitosan-silver nitrate nanoparticles (F127-QCS-AgNO3), as the porous absorbent and antibacterial layer. A bottom layer of core-shell nanofibrous structure of F127-mupirocin/pectin-keratin (F127-Mup/Pec-Kr) for tissue regeneration and enable antibacterial activity was coated onto the middle layer. A range of techniques were applied to fully characterize the resultant structure. The average tensile strength and elastic modulus of the 3L scaffold were measured as 0.65 ± 0.08 MPa and 9.37 ± 2.33 MPa, respectively. The release of Ag ions, mupirocin (Mup), and the antibacterial activity of the dressings was investigated. According to the results, the highest rate of cell adhesion and viability, and angiogenic potential among the studied samples were related to the 3L scaffold, which was also found to significantly accelerate the wound healing.


Asunto(s)
Quitosano , Nanofibras , Mupirocina , Andamios del Tejido/química , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/química , Quitosano/química , Impresión Tridimensional , Nanofibras/química
19.
Int J Biol Macromol ; 253(Pt 2): 126700, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673152

RESUMEN

In the current study, a core-shell nanofibrous wound dressing based on Pluronic-F127 (F127) containing 2 wt% mupirocin (Mup) core and pectin (Pec)-keratin (Kr) shell was fabricated through coaxial electrospinning technique, and the blended nanofibers were also fabricated from the same materials. The fiber diameter and specific surface area of the blended nanofibers were about 101.56 nm and 20.16 m2/g, while for core-shell nanofibers they were about 97.32 nm and 25.26 m2/g, respectively. The resultant blended and core-shell nanofibers experienced a degradation of 27.65 % and 32.28 % during 7 days, respectively. The drug release profile of core-shell nanofibers revealed a sustained release of Mup over 7 days (87.66 %), while the blended F127-Pec-Kr-Mup nanofibers had a burst release within the first few hours (89.38 % up to 48 h) and a cumulative release of 91.36 % after 7 days. Due to the controlled release of Mup, the core-shell structure significantly improved the human keratinocytes behavior, angiogenic potential and wound healing in a rat model compared to the blended structure. In conclusion, the F127-Mup/Pec-Kr core-shell nanofibrous wound dressing appears to be a promising candidate for the prevention of infection, and can potentially accelerate the recovery and healing of chronic and ischemic wounds.


Asunto(s)
Mupirocina , Nanofibras , Humanos , Ratas , Animales , Mupirocina/farmacología , Nanofibras/química , Poloxámero , Queratinas , Pectinas/farmacología , Cicatrización de Heridas , Queratinocitos
20.
ACS Appl Mater Interfaces ; 15(48): 55276-55286, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37990423

RESUMEN

To overcome the drawbacks of single-layered wound dressings, bilayer dressings are now introduced as an alternative to achieve effective and long-term treatment. Here, a bilayer dressing composed of electrospun nanofibers in the bottom layer (BL) and a sponge structure as the top layer (TL) is presented. Hydrophilic poly(acrylic acid) (PAAc)-honey (Hny) with interconnected pores of 76.04 µm was prepared as the TL and keratin (Kr), Hny, and vascular endothelial growth factor (VEGF) were prepared as the BL. VEGF indicates a gradual release over 7 days, promoting angiogenesis, as proven by the chick chorioallantoic membrane assay and in vivo tissue histomorphology observation. Additionally, the fabricated dressing material indicated a satisfactory tensile profile, cytocompatibility for human keratinocyte cells, and the ability to promote cell attachment and migration. The in vivo animal model demonstrated that the full-thickness wound healed faster when it was covered with PAAc-Hny/Hny-Kr-VEGF than in other groups. Additionally, faster blood vessel formation, collagen synthetization, and epidermal layer generation were also confirmed, which have proven efficient healing acceleration in wounds treated with synthesized bilayer dressings. Our findings indicated that the fabricated material can be promising as a functional wound dressing.


Asunto(s)
Miel , Nanofibras , Animales , Humanos , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Queratinas/farmacología , Cicatrización de Heridas , Vendajes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA