RESUMEN
BACKGROUND: Breast cancer screening is currently predominantly based on mammography, tainted with the occurrence of both false positivity and false negativity, urging for innovative strategies, as effective detection of early-stage breast cancer bears the potential to reduce mortality. Here we report the results of a prospective pilot study on breast cancer detection using blood plasma analyzed by Fourier-transform infrared (FTIR) spectroscopy - a rapid, cost-effective technique with minimal sample volume requirements and potential to aid biomedical diagnostics. FTIR has the capacity to probe health phenotypes via the investigation of the full repertoire of molecular species within a sample at once, within a single measurement in a high-throughput manner. In this study, we take advantage of cross-molecular fingerprinting to probe for breast cancer detection. METHODS: We compare two groups: 26 patients diagnosed with breast cancer to a same-sized group of age-matched healthy, asymptomatic female participants. Training with support-vector machines (SVM), we derive classification models that we test in a repeated 10-fold cross-validation over 10 times. In addition, we investigate spectral information responsible for BC identification using statistical significance testing. RESULTS: Our models to detect breast cancer achieve an average overall performance of 0.79 in terms of area under the curve (AUC) of the receiver operating characteristic (ROC). In addition, we uncover a relationship between the effect size of the measured infrared fingerprints and the tumor progression. CONCLUSION: This pilot study provides the foundation for further extending and evaluating blood-based infrared probing approach as a possible cross-molecular fingerprinting modality to tackle breast cancer detection and thus possibly contribute to the future of cancer screening.