Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Cell ; 158(6): 1431-1443, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215497

RESUMEN

Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.


Asunto(s)
Arabidopsis/genética , Motivos de Nucleótidos , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Humanos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Unión Proteica , Sitios de Carácter Cuantitativo
2.
Genome Res ; 31(8): 1498-1511, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34183452

RESUMEN

Dictyostelium development begins with single-cell starvation and ends with multicellular fruiting bodies. Developmental morphogenesis is accompanied by sweeping transcriptional changes, encompassing nearly half of the 13,000 genes in the genome. We performed time-series RNA-sequencing analyses of the wild type and 20 mutants to explore the relationships between transcription and morphogenesis. These strains show developmental arrest at different stages, accelerated development, or atypical morphologies. Considering eight major morphological transitions, we identified 1371 milestone genes whose expression changes sharply between consecutive transitions. We also identified 1099 genes as members of 21 regulons, which are groups of genes that remain coordinately regulated despite the genetic, temporal, and developmental perturbations. The gene annotations in these groups validate known transitions and reveal new developmental events. For example, DNA replication genes are tightly coregulated with cell division genes, so they are expressed in mid-development although chromosomal DNA is not replicated. Our data set includes 486 transcriptional profiles that can help identify new relationships between transcription and development and improve gene annotations. We show its utility by showing that cycles of aggregation and disaggregation in allorecognition-defective mutants involve dedifferentiation. We also show sensitivity to genetic and developmental conditions in two commonly used actin genes, act6 and act15, and robustness of the coaA gene. Finally, we propose that gpdA is a better mRNA quantitation standard because it is less sensitive to external conditions than commonly used standards. The data set is available for democratized exploration through the web application dictyExpress and the data mining environment Orange.


Asunto(s)
Dictyostelium , Dictyostelium/genética , Morfogénesis , ARN Mensajero/metabolismo , Regulón , Programas Informáticos
3.
J Cell Sci ; 134(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34169317

RESUMEN

Allorecognition and tissue formation are interconnected processes that require signaling between matching pairs of the polymorphic transmembrane proteins TgrB1 and TgrC1 in Dictyostelium. Extracellular and intracellular cAMP signaling are essential to many developmental processes. The three adenylate cyclase genes, acaA, acrA and acgA are required for aggregation, culmination and spore dormancy, respectively, and some of their functions can be suppressed by activation of the cAMP-dependent protein kinase PKA. Previous studies have suggested that cAMP signaling might be dispensable for allorecognition and tissue formation, while others have argued that it is essential throughout development. Here, we show that allorecognition and tissue formation do not require cAMP production as long as PKA is active. We eliminated cAMP production by deleting the three adenylate cyclases and overexpressed PKA-C to enable aggregation. The cells exhibited cell polarization, tissue formation and cooperation with allotype-compatible wild-type cells, but not with incompatible cells. Therefore, TgrB1-TgrC1 signaling controls allorecognition and tissue formation, while cAMP is dispensable as long as PKA-C is overexpressed.


Asunto(s)
Dictyostelium , Adenilil Ciclasas/genética , AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dictyostelium/genética , Proteínas Protozoarias/genética
4.
Nucleic Acids Res ; 48(8): 4139-4146, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32232356

RESUMEN

GoldenBraid is a rapid, modular, and robust cloning system used to assemble and combine genetic elements. Dictyostelium amoebae represent an intriguing synthetic biological chassis with tractable applications in development, chemotaxis, bacteria-host interactions, and allorecognition. We present GoldenBraid as a synthetic biological framework for Dictyostelium, including a library of 250 DNA parts and assemblies and a proof-of-concept strain that illustrates cAMP-chemotaxis with four fluorescent reporters coded by one plasmid.


Asunto(s)
Clonación Molecular/métodos , Dictyostelium/genética , Quimiotaxis , AMP Cíclico/fisiología , Dictyostelium/fisiología , Proteínas Luminiscentes/genética , Biología Sintética/métodos
5.
Bioinformatics ; 35(14): i4-i12, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31510695

RESUMEN

MOTIVATION: Single-cell RNA sequencing allows us to simultaneously profile the transcriptomes of thousands of cells and to indulge in exploring cell diversity, development and discovery of new molecular mechanisms. Analysis of scRNA data involves a combination of non-trivial steps from statistics, data visualization, bioinformatics and machine learning. Training molecular biologists in single-cell data analysis and empowering them to review and analyze their data can be challenging, both because of the complexity of the methods and the steep learning curve. RESULTS: We propose a workshop-style training in single-cell data analytics that relies on an explorative data analysis toolbox and a hands-on teaching style. The training relies on scOrange, a newly developed extension of a data mining framework that features workflow design through visual programming and interactive visualizations. Workshops with scOrange can proceed much faster than similar training methods that rely on computer programming and analysis through scripting in R or Python, allowing the trainer to cover more ground in the same time-frame. We here review the design principles of the scOrange toolbox that support such workshops and propose a syllabus for the course. We also provide examples of data analysis workflows that instructors can use during the training. AVAILABILITY AND IMPLEMENTATION: scOrange is an open-source software. The software, documentation and an emerging set of educational videos are available at http://singlecell.biolab.si.


Asunto(s)
Biología Computacional , Ciencia de los Datos , Programas Informáticos , Análisis de Secuencia de ARN , Flujo de Trabajo
6.
J Cell Sci ; 130(23): 4002-4012, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29038229

RESUMEN

Allorecognition is a key factor in Dictyostelium development and sociality. It is mediated by two polymorphic transmembrane proteins, TgrB1 and TgrC1, which contain extracellular immunoglobulin domains. TgrB1 and TgrC1 are necessary and sufficient for allorecognition, and they carry out separate albeit overlapping functions in development, but their mechanism of action is unknown. Here, we show that TgrB1 acts as a receptor with TgrC1 as its ligand in cooperative aggregation and differentiation. The proteins bind each other in a sequence-specific manner; TgrB1 exhibits a cell-autonomous function and TgrC1 acts non-cell-autonomously. The TgrB1 cytoplasmic tail is essential for its function and it becomes phosphorylated upon association with TgrC1. Dominant mutations in TgrB1 activate the receptor function and confer partial ligand independence. These roles in development and sociality suggest that allorecognition is crucial in the integration of individual cells into a coherent organism.


Asunto(s)
Adhesión Celular/fisiología , Dictyostelium/metabolismo , Ligandos , Proteínas Protozoarias/metabolismo , Proteínas Portadoras/metabolismo , Diferenciación Celular/fisiología , AMP Cíclico/metabolismo , Proteínas de la Membrana/metabolismo , Mutación/genética , Transporte de Proteínas/fisiología , Proteínas Protozoarias/genética
7.
Genome Res ; 26(9): 1268-76, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27307293

RESUMEN

Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods.


Asunto(s)
Dictyostelium/genética , Mutagénesis/genética , Secuenciación Completa del Genoma/métodos , Mapeo Cromosómico , Dictyostelium/efectos de los fármacos , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mutagénesis/efectos de los fármacos , Mutágenos/toxicidad
8.
Proc Natl Acad Sci U S A ; 113(43): 12132-12137, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27790999

RESUMEN

Terpenes are structurally diverse natural products involved in many ecological interactions. The pivotal enzymes for terpene biosynthesis, terpene synthases (TPSs), had been described only in plants and fungi in the eukaryotic domain. In this report, we systematically analyzed the genome sequences of a broad range of nonplant/nonfungus eukaryotes and identified putative TPS genes in six species of amoebae, five of which are multicellular social amoebae from the order of Dictyosteliida. A phylogenetic analysis revealed that amoebal TPSs are evolutionarily more closely related to fungal TPSs than to bacterial TPSs. The social amoeba Dictyostelium discoideum was selected for functional study of the identified TPSs. D. discoideum grows as a unicellular organism when food is abundant and switches from vegetative growth to multicellular development upon starvation. We found that expression of most D. discoideum TPS genes was induced during development. Upon heterologous expression, all nine TPSs from D. discoideum showed sesquiterpene synthase activities. Some also exhibited monoterpene and/or diterpene synthase activities. Direct measurement of volatile terpenes in cultures of D. discoideum revealed essentially no emission at an early stage of development. In contrast, a bouquet of terpenes, dominated by sesquiterpenes including ß-barbatene and (E,E)-α-farnesene, was detected at the middle and late stages of development, suggesting a development-specific function of volatile terpenes in D. discoideum. The patchy distribution of TPS genes in the eukaryotic domain and the evidence for TPS function in D. discoideum indicate that the TPS genes mediate lineage-specific adaptations.


Asunto(s)
Transferasas Alquil y Aril/genética , Dictyostelium/genética , Genoma de Protozoos , Filogenia , Proteínas Protozoarias/genética , Terpenos/metabolismo , Adaptación Fisiológica , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/metabolismo , Evolución Biológica , Clonación Molecular , Dictyostelium/clasificación , Dictyostelium/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Familia de Multigenes , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Volatilización
9.
J Cell Sci ; 129(8): 1722-1733, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26962009

RESUMEN

The GATA transcription factor GtaG is conserved in Dictyostelids and essential for terminal differentiation in Dictyostelium discoideum, but its function is not well understood. Here we show that gtaG is expressed in prestalk cells at the anterior region of fingers and in the extending stalk during culmination. The gtaG- phenotype is cell-autonomous in prestalk cells and non-cell-autonomous in prespore cells. Transcriptome analyses reveal that GtaG regulates prestalk gene expression during cell differentiation before culmination and is required for progression into culmination. GtaG-dependent genes include genetic suppressors of the Dd-STATa-defective phenotype as well as Dd-STATa target-genes, including extra cellular matrix genes. We show that GtaG may be involved in the production of two culmination-signaling molecules, cyclic di-GMP and the spore differentiation factor SDF-1 and that addition of c-di-GMP rescues the gtaG- culmination and spore formation deficiencies. We propose that GtaG is a regulator of terminal differentiation that functions in concert with Dd-STATa and controls culmination through regulating c-di-GMP and SDF-1 production in prestalk cells.

10.
Development ; 142(20): 3561-70, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26395484

RESUMEN

The social amoeba Dictyostelium discoideum integrates into a multicellular organism when individual starving cells aggregate and form a mound. The cells then integrate into defined tissues and develop into a fruiting body that consists of a stalk and spores. Aggregation is initially orchestrated by waves of extracellular cyclic adenosine monophosphate (cAMP), and previous theory suggested that cAMP and other field-wide diffusible signals mediate tissue integration and terminal differentiation as well. Cooperation between cells depends on an allorecognition system comprising the polymorphic adhesion proteins TgrB1 and TgrC1. Binding between compatible TgrB1 and TgrC1 variants ensures that non-matching cells segregate into distinct aggregates prior to terminal development. Here, we have embedded a small number of cells with incompatible allotypes within fields of developing cells with compatible allotypes. We found that compatibility of the allotype encoded by the tgrB1 and tgrC1 genes is required for tissue integration, as manifested in cell polarization, coordinated movement and differentiation into prestalk and prespore cells. Our results show that the molecules that mediate allorecognition in D. discoideum also control the integration of individual cells into a unified developing organism, and this acts as a gating step for multicellularity.


Asunto(s)
Dictyostelium/citología , Regulación del Desarrollo de la Expresión Génica , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Proteínas Protozoarias/metabolismo , Alelos , Animales , Adhesión Celular , Comunicación Celular , Diferenciación Celular , Movimiento Celular , Quimiotaxis/fisiología , AMP Cíclico/metabolismo , Dictyostelium/genética , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Morfogénesis , Unión Proteica , Recombinación Genética , Transcripción Genética
11.
BMC Bioinformatics ; 18(1): 291, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28578698

RESUMEN

BACKGROUND: Dictyostelium discoideum, a soil-dwelling social amoeba, is a model for the study of numerous biological processes. Research in the field has benefited mightily from the adoption of next-generation sequencing for genomics and transcriptomics. Dictyostelium biologists now face the widespread challenges of analyzing and exploring high dimensional data sets to generate hypotheses and discovering novel insights. RESULTS: We present dictyExpress (2.0), a web application designed for exploratory analysis of gene expression data, as well as data from related experiments such as Chromatin Immunoprecipitation sequencing (ChIP-Seq). The application features visualization modules that include time course expression profiles, clustering, gene ontology enrichment analysis, differential expression analysis and comparison of experiments. All visualizations are interactive and interconnected, such that the selection of genes in one module propagates instantly to visualizations in other modules. dictyExpress currently stores the data from over 800 Dictyostelium experiments and is embedded within a general-purpose software framework for management of next-generation sequencing data. dictyExpress allows users to explore their data in a broader context by reciprocal linking with dictyBase-a repository of Dictyostelium genomic data. In addition, we introduce a companion application called GenBoard, an intuitive graphic user interface for data management and bioinformatics analysis. CONCLUSIONS: dictyExpress and GenBoard enable broad adoption of next generation sequencing based inquiries by the Dictyostelium research community. Labs without the means to undertake deep sequencing projects can mine the data available to the public. The entire information flow, from raw sequence data to hypothesis testing, can be accomplished in an efficient workspace. The software framework is generalizable and represents a useful approach for any research community. To encourage more wide usage, the backend is open-source, available for extension and further development by bioinformaticians and data scientists.


Asunto(s)
Dictyostelium/metabolismo , Interfaz Usuario-Computador , Inmunoprecipitación de Cromatina , Análisis por Conglomerados , Dictyostelium/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Internet , Análisis de Secuencia de ARN , Transcriptoma
12.
J Cell Sci ; 128(21): 3990-6, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26359303

RESUMEN

Cell surface adhesion receptors play diverse functions in multicellular development. In Dictyostelium, two immunoglobulin-like adhesion proteins, TgrB1 and TgrC1, are essential components with dual roles in morphogenesis and allorecognition during development. TgrB1 and TgrC1 form a heterophilic adhesion complex during cell contact and mediate intercellular communication. The underlying signaling pathways, however, have not been characterized. Here, we report on a mutation that suppresses the tgrB-tgrC1-defective developmental arrest. The mutated gene alg9 encodes a putative mannosyl transferase that participates in N-linked protein glycosylation. We show that alteration in N-linked glycosylation, caused by an alg9 mutation with a plasmid insertion (alg9(ins)) or tunicamycin treatment, can partially suppress the developmental phenotypes caused by tgrC1 deletion or replacement with an incompatible allele. The alg9(ins) mutation also preferentially primed cells toward a stalk-cell fate. Despite its effect on development, we found that altered N-linked glycosylation had no discernable effect on TgrB1-TgrC1-mediated allorecognition. Our results show that N-linked protein glycosylation can modulate developmental processes without disturbing cell-cell recognition, suggesting that tgrB1 and tgrC1 have distinct effects in the two processes.


Asunto(s)
Dictyostelium/metabolismo , Proteínas Protozoarias/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Glicosilación
13.
Dev Biol ; 397(2): 203-11, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25448698

RESUMEN

Extracellular cAMP functions as a primary ligand for cell surface cAMP receptors throughout Dictyostelium discoideum development, controlling chemotaxis and morphogenesis. The developmental consequences of cAMP signaling and the metabolism of cAMP have been studied in great detail, but it has been unclear how cells export cAMP across the plasma membrane. Here we show pharmacologically and genetically that ABC transporters mediate cAMP export. Using an evolutionary-developmental biology approach, we identified several candidate abc genes and characterized one of them, abcB3, in more detail. Genetic and biochemical evidence suggest that AbcB3 is a component of the cAMP export mechanism in D. discoideum development.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Quimiotaxis/fisiología , AMP Cíclico/metabolismo , Dictyostelium/crecimiento & desarrollo , Morfogénesis/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Técnicas de Silenciamiento del Gen , Interferencia de ARN , Transducción de Señal/fisiología
14.
PLoS Comput Biol ; 11(10): e1004552, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26465776

RESUMEN

Data integration procedures combine heterogeneous data sets into predictive models, but they are limited to data explicitly related to the target object type, such as genes. Collage is a new data fusion approach to gene prioritization. It considers data sets of various association levels with the prediction task, utilizes collective matrix factorization to compress the data, and chaining to relate different object types contained in a data compendium. Collage prioritizes genes based on their similarity to several seed genes. We tested Collage by prioritizing bacterial response genes in Dictyostelium as a novel model system for prokaryote-eukaryote interactions. Using 4 seed genes and 14 data sets, only one of which was directly related to the bacterial response, Collage proposed 8 candidate genes that were readily validated as necessary for the response of Dictyostelium to Gram-negative bacteria. These findings establish Collage as a method for inferring biological knowledge from the integration of heterogeneous and coarsely related data sets.


Asunto(s)
Compresión de Datos/métodos , Bases de Datos Genéticas , Dictyostelium/metabolismo , Dictyostelium/microbiología , Bacterias Gramnegativas/fisiología , Proteínas Protozoarias/metabolismo , Proliferación Celular/fisiología , Minería de Datos/métodos , Proteínas Protozoarias/genética
15.
Genomics ; 106(4): 249-55, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26028264

RESUMEN

The natural history of the amoeba Dictyostelium discoideum has inspired scientific inquiry for seventy-five years. A genetically tractable haploid eukaryote, D. discoideum appeals as a laboratory model as well. However, certain rote molecular genetic tasks, such as PCR and cloning, are difficult due to the AT-richness and low complexity of its genome. Here we report on the construction of a ~20 fold coverage D. discoideum genomic library in Escherichia coli, cloning 4-10 kilobase partial restriction fragments into a linear vector. End-sequencing indicates that most clones map to the six chromosomes in an unbiased distribution. Over 70% of these clones contain at least one complete open reading frame. We demonstrate that individual clones and library composition are stable over multiple replication cycles. Our library will enable numerous molecular biological applications and the completion of additional species' genome sequences, and suggests a path towards the long-elusive goal of genetic complementation.


Asunto(s)
Dictyostelium/genética , Escherichia coli/genética , Genoma de Protozoos , Clonación Molecular , Biblioteca Genómica , Análisis de Secuencia de ADN
16.
BMC Genomics ; 16: 294, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25887420

RESUMEN

BACKGROUND: Development of the soil amoeba Dictyostelium discoideum is triggered by starvation. When placed on a solid substrate, the starving solitary amoebae cease growth, communicate via extracellular cAMP, aggregate by tens of thousands and develop into multicellular organisms. Early phases of the developmental program are often studied in cells starved in suspension while cAMP is provided exogenously. Previous studies revealed massive shifts in the transcriptome under both developmental conditions and a close relationship between gene expression and morphogenesis, but were limited by the sampling frequency and the resolution of the methods. RESULTS: Here, we combine the superior depth and specificity of RNA-seq-based analysis of mRNA abundance with high frequency sampling during filter development and cAMP pulsing in suspension. We found that the developmental transcriptome exhibits mostly gradual changes interspersed by a few instances of large shifts. For each time point we treated the entire transcriptome as single phenotype, and were able to characterize development as groups of similar time points separated by gaps. The grouped time points represented gradual changes in mRNA abundance, or molecular phenotype, and the gaps represented times during which many genes are differentially expressed rapidly, and thus the phenotype changes dramatically. Comparing developmental experiments revealed that gene expression in filter developed cells lagged behind those treated with exogenous cAMP in suspension. The high sampling frequency revealed many genes whose regulation is reproducibly more complex than indicated by previous studies. Gene Ontology enrichment analysis suggested that the transition to multicellularity coincided with rapid accumulation of transcripts associated with DNA processes and mitosis. Later development included the up-regulation of organic signaling molecules and co-factor biosynthesis. Our analysis also demonstrated a high level of synchrony among the developing structures throughout development. CONCLUSIONS: Our data describe D. discoideum development as a series of coordinated cellular and multicellular activities. Coordination occurred within fields of aggregating cells and among multicellular bodies, such as mounds or migratory slugs that experience both cell-cell contact and various soluble signaling regimes. These time courses, sampled at the highest temporal resolution to date in this system, provide a comprehensive resource for studies of developmental gene expression.


Asunto(s)
Dictyostelium/crecimiento & desarrollo , Dictyostelium/genética , ARN Mensajero/metabolismo , Transcriptoma , AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Morfogénesis
17.
Nature ; 461(7266): 980-2, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19794414

RESUMEN

Cooperative social systems are susceptible to cheating by individuals that reap the benefits of cooperation without incurring the costs. There are various theoretical mechanisms for the repression of cheating and many have been tested experimentally. One possibility that has not been tested rigorously is the evolution of mutations that confer resistance to cheating. Here we show that the presence of a cheater in a population of randomly mutated social amoebae can select for cheater-resistance. Furthermore, we show that this cheater-resistance can be a noble strategy because the resister strain does not necessarily exploit other strains. Thus, the evolution of resisters may be instrumental in preserving cooperative behaviour in the face of cheating.


Asunto(s)
Dictyostelium/fisiología , Modelos Biológicos , Conducta Social , Animales , Conducta Cooperativa , Dictyostelium/genética , Evolución Molecular , Genes Protozoarios/genética , Mutación/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esporas Protozoarias/fisiología
18.
Nature ; 451(7182): 1107-10, 2008 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-18272966

RESUMEN

Cooperation is central to many major transitions in evolution, including the emergence of eukaryotic cells, multicellularity and eusociality. Cooperation can be destroyed by the spread of cheater mutants that do not cooperate but gain the benefits of cooperation from others. However, cooperation can be preserved if cheaters are facultative, cheating others but cooperating among themselves. Several cheater mutants have been studied before, but no study has attempted a genome-scale investigation of the genetic opportunities for cheating. Here we describe such a screen in a social amoeba and show that cheating is multifaceted by revealing cheater mutations in well over 100 genes of diverse types. Many of these mutants cheat facultatively, producing more than their fair share of spores in chimaeras, but cooperating normally when clonal. These findings indicate that phenotypically stable cooperative systems may nevertheless harbour genetic conflicts. The opportunities for evolutionary moves and countermoves in such conflicts may select for the involvement of multiple pathways and numerous genes.


Asunto(s)
Conducta Cooperativa , Dictyostelium/genética , Dictyostelium/fisiología , Mutación/genética , Conducta Social , Amoeba/genética , Amoeba/fisiología , Animales , Agregación Celular , Quimera/genética , Quimera/fisiología , Dictyostelium/citología , Genes Protozoarios/genética , Genoma/genética , Genómica , Myxococcus xanthus/genética , Myxococcus xanthus/fisiología , Fenotipo , Esporas Protozoarias/genética , Esporas Protozoarias/fisiología
19.
Nat Genet ; 37(5): 471-7, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15821735

RESUMEN

Classical epistasis analysis can determine the order of function of genes in pathways using morphological, biochemical and other phenotypes. It requires knowledge of the pathway's phenotypic output and a variety of experimental expertise and so is unsuitable for genome-scale analysis. Here we used microarray profiles of mutants as phenotypes for epistasis analysis. Considering genes that regulate activity of protein kinase A in Dictyostelium, we identified known and unknown epistatic relationships and reconstructed a genetic network with microarray phenotypes alone. This work shows that microarray data can provide a uniform, quantitative tool for large-scale genetic network analysis.


Asunto(s)
Dictyostelium/genética , Epistasis Genética , Transcripción Genética , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dictyostelium/enzimología , Mutación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo
20.
Nat Commun ; 15(1): 3984, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734736

RESUMEN

Greenbeard genetic elements encode rare perceptible signals, signal recognition ability, and altruism towards others that display the same signal. Putative greenbeards have been described in various organisms but direct evidence for all the properties in one system is scarce. The tgrB1-tgrC1 allorecognition system of Dictyostelium discoideum encodes two polymorphic membrane proteins which protect cells from chimerism-associated perils. During development, TgrC1 functions as a ligand-signal and TgrB1 as its receptor, but evidence for altruism has been indirect. Here, we show that mixing wild-type and activated tgrB1 cells increases wild-type spore production and relegates the mutants to the altruistic stalk, whereas mixing wild-type and tgrB1-null cells increases mutant spore production and wild-type stalk production. The tgrB1-null cells cheat only on partners that carry the same tgrC1-allotype. Therefore, TgrB1 activation confers altruism whereas TgrB1 inactivation causes allotype-specific cheating, supporting the greenbeard concept and providing insight into the relationship between allorecognition, altruism, and exploitation.


Asunto(s)
Altruismo , Dictyostelium , Proteínas de la Membrana , Proteínas Protozoarias , Quimiotaxis/genética , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Mutación , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal , Esporas Protozoarias/genética , Esporas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA