Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Mol Life Sci ; 80(11): 345, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921875

RESUMEN

AMPA receptors are members of the glutamate receptor family and mediate a fast component of excitatory synaptic transmission at virtually all central synapses. Thus, their functional characteristics are a critical determinant of brain function. We evaluate intolerance of each GRIA gene to genetic variation using 3DMTR and report here the functional consequences of 52 missense variants in GRIA1-4 identified in patients with various neurological disorders. These variants produce changes in agonist EC50, response time course, desensitization, and/or receptor surface expression. We predict that these functional and localization changes will have important consequences for circuit function, and therefore likely contribute to the patients' clinical phenotype. We evaluated the sensitivity of variant receptors to AMPAR-selective modulators including FDA-approved drugs to explore potential targeted therapeutic options.


Asunto(s)
Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/genética , Transmisión Sináptica/fisiología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/metabolismo
2.
J Med Genet ; 60(2): 183-192, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35393335

RESUMEN

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Asunto(s)
Epilepsia , Microcefalia , Receptores de N-Metil-D-Aspartato , Humanos , Heterocigoto , Homocigoto , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética
3.
J Pharmacol Exp Ther ; 381(1): 54-66, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35110392

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are tetrameric assemblies of two glutamate N-methyl-D-aspartate receptor subunits, GluN1 and two GluN2, that mediate excitatory synaptic transmission in the central nervous system. Four genes (GRIN2A-D) encode four distinct GluN2 subunits (GluN2A-D). Thus, NMDARs can be diheteromeric assemblies of two GluN1 plus two identical GluN2 subunits, or triheteromeric assemblies of two GluN1 subunits plus two different GluN2 subunits. An increasing number of de novo GRIN variants have been identified in patients with neurologic conditions and with GRIN2A and GRIN2B harboring the vast majority (> 80%) of variants in these cases. These variants produce a wide range of effects on NMDAR function depending upon its subunit subdomain location and additionally on the subunit composition of diheteromeric versus triheteromeric NMDARs. Increasing evidence implicates triheteromeric GluN1/GluN2A/GluN2B receptors as a major component of the NMDAR pool in the adult cortex and hippocampus. Here, we explore the ability of GluN2A- and GluN2B-selective inhibitors to reduce excess current flow through triheteromeric GluN1/GluN2A/GluN2B receptors that contain one copy of GRIN2A or GRIN2B gain-of-function variants. Our data reveal a broad range of sensitivities for variant-containing triheteromeric receptors to subunit-selective inhibitors, with some variants still showing strong sensitivity to inhibitors, whereas others are relatively insensitive. Most variants, however, retain sensitivity to non-selective channel blockers and the competitive antagonist D-(-)-2-amino-5-phosphonopentanoic acid. These results suggest that with comprehensive analysis, certain disease-related GRIN2A and GRIN2B variants can be identified as potential targets for subunit-selective modulation and potential therapeutic gain. SIGNIFICANCE STATEMENT: Triheteromeric NMDA receptors that contain one copy each of the GluN2A and GluN2B subunits show intermediate sensitivity to GluN2A- and GluN2B-selective inhibitors, making these compounds candidates for attenuating overactive, GRIN variant-containing NMDA receptors associated with neurological conditions. We show that functional evaluation of variant properties with inhibitor pharmacology can support selection of a subset of variants for which GluN2 subunit-selective agents remain effective inhibitors of variant-containing triheteromeric NMDA receptors.


Asunto(s)
Mutación con Ganancia de Función , Receptores de N-Metil-D-Aspartato , Hipocampo/metabolismo , Humanos , Transmisión Sináptica
4.
Brain ; 141(3): 698-712, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365063

RESUMEN

Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria.


Asunto(s)
Mutación/genética , Proteínas del Tejido Nervioso/genética , Polimicrogiria/genética , Receptores de N-Metil-D-Aspartato/genética , Animales , Niño , Preescolar , Análisis Mutacional de ADN , Agonistas de Aminoácidos Excitadores/farmacología , Salud de la Familia , Femenino , Ácido Glutámico/farmacología , Glicina/metabolismo , Glicina/farmacología , Células HEK293 , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Potenciales de la Membrana/genética , Modelos Moleculares , Mutagénesis/genética , N-Metilaspartato/farmacología , Técnicas de Placa-Clamp , Polimicrogiria/diagnóstico por imagen , Ratas , Transfección
5.
Mol Pharmacol ; 93(2): 141-156, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29242355

RESUMEN

N-methyl-d-aspartate (NMDA) receptors are ligand-gated, cation-selective channels that mediate a slow component of excitatory synaptic transmission. Subunit-selective positive allosteric modulators of NMDA receptor function have therapeutically relevant effects on multiple processes in the brain. A series of pyrrolidinones, such as PYD-106, that selectively potentiate NMDA receptors that contain the GluN2C subunit have structural determinants of activity that reside between the GluN2C amino terminal domain and the GluN2C agonist binding domain, suggesting a unique site of action. Here we use molecular biology and homology modeling to identify residues that line a candidate binding pocket for GluN2C-selective pyrrolidinones. We also show that occupancy of only one site in diheteromeric receptors is required for potentiation. Both GluN2A and GluN2B can dominate the sensitivity of triheteromeric receptors to eliminate the actions of pyrrolidinones, thus rendering this series uniquely sensitive to subunit stoichiometry. We experimentally identified NMR-derived conformers in solution, which combined with molecular modeling allows the prediction of the bioactive binding pose for this series of GluN2C-selective positive allosteric modulators of NMDA receptors. These data advance our understanding of the site and nature of the ligand-protein interaction for GluN2C-selective positive allosteric modulators for NMDA receptors.


Asunto(s)
Receptores de N-Metil-D-Aspartato/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Técnicas de Placa-Clamp , Conformación Proteica , Espectroscopía de Protones por Resonancia Magnética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Reproducibilidad de los Resultados , Estereoisomerismo , Xenopus laevis
6.
Front Genet ; 12: 694312, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413877

RESUMEN

N-Methyl-D-aspartate receptors (NMDARs) are highly expressed in brain and play important roles in neurodevelopment and various neuropathologic conditions. Here, we describe a new phenotype in an individual associated with a novel de novo deleterious variant in GRIN1 (c.1595C>A, p.Pro532His). The clinical phenotype is characterized with developmental encephalopathy, striking stimulus-sensitive myoclonus, and frontal lobe and frontal white matter hypoplasia, with no apparent seizures detected. NMDARs that contained the P532H within the glycine-binding domain of GluN1 with either the GluN2A or GluN2B subunits were evaluated for changes in their pharmacological and biophysical properties, which surprisingly revealed only modest changes in glycine potency but a significant decrease in glutamate potency, an increase in sensitivity to endogenous zinc inhibition, a decrease in response to maximally effective concentrations of agonists, a shortened synaptic-like response time course, a decreased channel open probability, and a reduced receptor cell surface expression. Molecule dynamics simulations suggested that the variant can lead to additional interactions across the dimer interface in the agonist-binding domains, resulting in a more open GluN2 agonist-binding domain cleft, which was also confirmed by single-molecule fluorescence resonance energy transfer measurements. Based on the functional deficits identified, several positive modulators were evaluated to explore potential rescue pharmacology.

7.
ACS Chem Neurosci ; 12(1): 79-98, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33326224

RESUMEN

N-Methyl-d-aspartate receptors (NMDARs) are ionotropic ligand-gated glutamate receptors that mediate fast excitatory synaptic transmission in the central nervous system (CNS). Several neurological disorders may involve NMDAR hypofunction, which has driven therapeutic interest in positive allosteric modulators (PAMs) of NMDAR function. Here we describe modest changes to the tetrahydroisoquinoline scaffold of GluN2C/GluN2D-selective PAMs that expands activity to include GluN2A- and GluN2B-containing recombinant and synaptic NMDARs. These new analogues are distinct from GluN2C/GluN2D-selective compounds like (+)-(3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (CIQ) by virtue of their subunit selectivity, molecular determinants of action, and allosteric regulation of agonist potency. The (S)-enantiomers of two analogues (EU1180-55, EU1180-154) showed activity at NMDARs containing all subunits (GluN2A, GluN2B, GluN2C, GluN2D), whereas the (R)-enantiomers were primarily active at GluN2C- and GluN2D-containing NMDARs. Determination of the actions of enantiomers on triheteromeric receptors confirms their unique pharmacology, with greater activity of (S) enantiomers at GluN2A/GluN2D and GluN2B/GluN2D subunit combinations than (R) enantiomers. Evaluation of the (S)-EU1180-55 and EU1180-154 response of chimeric kainate/NMDA receptors revealed structural determinants of action within the pore-forming region and associated linkers. Scanning mutagenesis identified structural determinants within the GluN1 pre-M1 and M1 regions that alter the activity of (S)-EU1180-55 but not (R)-EU1180-55. By contrast, mutations in pre-M1 and M1 regions of GluN2D perturb the actions of only the (R)-EU1180-55 but not the (S) enantiomer. Molecular modeling supports the idea that the (S) and (R) enantiomers interact distinctly with GluN1 and GluN2 pre-M1 regions, suggesting that two distinct sites exist for these NMDAR PAMs, each of which has different functional effects.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Transmisión Sináptica , Regulación Alostérica , Modelos Moleculares , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Neuropharmacology ; 176: 108117, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32389749

RESUMEN

NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission. Most native NMDA receptors are tetrameric assemblies of two glycine-binding GluN1 and two glutamate-binding GluN2 subunits. Co-assembly of the glycine-binding GluN1 with glycine-binding GluN3 subunits (GluN3A-B) creates glycine activated receptors that possess strikingly different functional and pharmacological properties compared to GluN1/GluN2 NMDA receptors. The role of GluN1/GluN3 receptors in neuronal function remains unknown, in part due to lack of pharmacological tools with which to explore their physiological roles. We have identified the negative allosteric modulator EU1180-438, which is selective for GluN1/GluN3 receptors over GluN1/GluN2 NMDA receptors, AMPA, and kainate receptors. EU1180-438 is also inactive at GABA, glycine, and P2X receptors, but displays inhibition of some nicotinic acetylcholine receptors. Furthermore, we demonstrate that EU1180-438 produces robust inhibition of glycine-activated current responses mediated by native GluN1/GluN3A receptors in hippocampal CA1 pyramidal neurons. EU1180-438 is a non-competitive antagonist with activity that is independent of membrane potential (i.e. voltage-independent), glycine concentration, and extracellular pH. Non-stationary fluctuation analysis of neuronal current responses provided an estimated weighted mean unitary conductance of 6.1 pS for GluN1/GluN3A channels, and showed that EU1180-438 has no effect on conductance. Site-directed mutagenesis suggests that structural determinants of EU1180-438 activity reside near a short pre-M1 helix that lies parallel to the plane of the membrane below the agonist binding domain. These findings demonstrate that structural differences between GluN3 and other glutamate receptor subunits can be exploited to generate subunit-selective ligands with utility in exploring the roles GluN3 in neuronal function.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Técnicas de Cultivo de Órganos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Xenopus laevis
9.
PLoS One ; 12(2): e0170818, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28182669

RESUMEN

OBJECTIVE: N-methyl-D-aspartate receptors (NMDAR) subunit GRIN2A/GluN2A mutations have been identified in patients with various neurological diseases, such as epilepsy and intellectual disability / developmental delay (ID/DD). In this study, we investigated the phenotype and underlying molecular mechanism of a GRIN2A missense mutation identified by next generation sequencing on idiopathic focal epilepsy using in vitro electrophysiology. METHODS: Genomic DNA of patients with epilepsy and ID/DD were sequenced by targeted next-generation sequencing within 300 genes related to epilepsy and ID/DD. The effects of one missense GRIN2A mutation on NMDAR function were evaluated by two-electrode voltage clamp current recordings and whole cell voltage clamp current recordings. RESULTS: We identified one de novo missense GRIN2A mutation (Asp731Asn, GluN2A(D731N)) in a child with unexplained epilepsy and DD. The D731N mutation is located in a portion of the agonist-binding domain (ABD) in the GluN2A subunit, which is the binding pocket for agonist glutamate. This residue in the ABD is conserved among vertebrate species and all other NMDAR subunits, suggesting an important role in receptor function. The proband shows developmental delay as well as EEG-confirmed seizure activity. Functional analyses reveal that the GluN2A(D731N) mutation decreases glutamate potency by over 3,000-fold, reduces amplitude of current response, shortens synaptic-like response time course, and decreases channel open probability, while enhancing sensitivity to negative allosteric modulators, including extracellular proton and zinc inhibition. The combined effects reduce NMDAR function. SIGNIFICANCE: We identified a de novo missense mutation in the GRIN2A gene in a patient with childhood focal epilepsy and acquired epileptic aphasia. The mutant decreases NMDAR activation suggesting NMDAR hypofunction may contribute to the epilepsy pathogenesis.


Asunto(s)
Electroencefalografía , Epilepsias Parciales , Síndrome de Landau-Kleffner , Potenciales de la Membrana/genética , Mutación Missense , Receptores de N-Metil-D-Aspartato , Sustitución de Aminoácidos , Epilepsias Parciales/genética , Epilepsias Parciales/metabolismo , Epilepsias Parciales/fisiopatología , Femenino , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Síndrome de Landau-Kleffner/genética , Síndrome de Landau-Kleffner/metabolismo , Síndrome de Landau-Kleffner/fisiopatología , Masculino , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA