Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Sports Med ; 45(3): 171-182, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37582398

RESUMEN

Autophagy is a cellular process by which proteins and organelles are degraded inside the lysosome. Exercise is known to influence the regulation of autophagy in skeletal muscle. However, as gold standard techniques to assess autophagy flux in vivo are restricted to animal research, important gaps remain in our understanding of how exercise influences autophagy activity in humans. Using available datasets, we show how the gene expression profile of autophagy receptors and ATG8 family members differ between human and mouse skeletal muscle, providing a potential explanation for their differing exercise-induced autophagy responses. Furthermore, we provide a comprehensive view of autophagy regulation following exercise in humans by summarizing human transcriptomic and phosphoproteomic datasets that provide novel targets of potential relevance. These newly identified phosphorylation sites may provide an explanation as to why both endurance and resistance exercise lead to an exercise-induced reduction in LC3B-II, while possibly divergently regulating autophagy receptors, and, potentially, autophagy flux. We also provide recommendations to use ex vivo autophagy flux assays to better understand the influence of exercise, and other stimuli, on autophagy regulation in humans. This review provides a critical overview of the field and directs researchers towards novel research areas that will improve our understanding of autophagy regulation following exercise in humans.


Asunto(s)
Autofagia , Ejercicio Físico , Animales , Ratones , Humanos , Músculo Esquelético , Estado Nutricional , Transcriptoma
2.
Am J Physiol Endocrinol Metab ; 323(3): E242-E253, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35793481

RESUMEN

The aim of the present study was to investigate the fiber type-specific abundance of autophagy-related proteins after an overnight fast and following ingestion of a mixed meal in human skeletal muscle. Twelve overweight, healthy young male volunteers underwent a 3-h mixed meal tolerance test following an overnight fast. Blood samples were collected in the overnight-fasted state and throughout the 180-min postmeal period. Skeletal muscle biopsies were collected in the fasted state, and at 30 and 90 min after meal ingestion. Protein content of key autophagy markers and upstream signaling responses were measured in whole muscle and pooled single fibers using immunoblotting. In the fasted state, type I fibers displayed lower LC3B-I but higher LC3B-II abundance and higher LC3B-II/LC3B-I ratio compared with type II fibers (P < 0.05). However, there were no fiber type differences in p62/SQSTM1, unc-51 like autophagy activating kinase (ULK1), ATG5, or ATG12 (P > 0.05). Compared with the fasted state, there was a reduction in LC3B-II abundance, indicative of lower autophagosome content, in whole muscle and in both type I and type II fibers following meal ingestion (P < 0.05). This reduction in autophagosome content occurred alongside similar increases in p-AktS473 and p-mTORS2448 in both type I and type II muscle fibers (P < 0.05). In human skeletal muscle, type I fibers have a greater autophagosome content than type II fibers in the overnight-fasted state despite comparable abundance of other key upstream autophagy proteins. Autophagy is rapidly inhibited in both fiber types following the ingestion of a mixed meal.NEW & NOTEWORTHY This study examined the fiber type-specific content of key autophagy proteins in human muscle. We showed that markers of autophagosome content are higher in type I fibers in the overnight-fasted state, whereas autophagy is rapidly inhibited in both type I and type II fibers after the ingestion of a mixed meal.


Asunto(s)
Autofagia , Músculo Esquelético , Autofagosomas , Ingestión de Alimentos , Humanos , Masculino , Fibras Musculares Esqueléticas
3.
J Physiol ; 599(1): 83-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191527

RESUMEN

KEY POINTS: Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion increases muscle microvascular blood flow which in part facilitates glucose delivery and disposal. In contrast, high-glucose ingestion impairs muscle microvascular blood flow which may contribute to impaired postprandial metabolism. We investigated the effects of prior cycling exercise on postprandial muscle microvascular blood flow responses to a high-glucose mixed-nutrient meal ingested 3 and 24 h post-exercise. Prior exercise enhanced muscle microvascular blood flow and mitigated microvascular impairments induced by a high-glucose mixed meal ingested 3 h post-exercise, and to a lesser extent 24 h post-exercise. High-glucose ingestion 3 h post-exercise leads to greater postprandial blood glucose, non-esterified fatty acids, and fat oxidation, and a delay in the insulin response to the meal compared to control. Effects of acute exercise on muscle microvascular blood flow persist well after the cessation of exercise which may be beneficial for conditions characterized by microvascular and glycaemic dysfunction. ABSTRACT: Exercise, insulin-infusion and low-glucose mixed-nutrient meal ingestion lead to increased muscle microvascular blood flow (MBF), whereas high-glucose ingestion impairs MBF. We investigated whether prior cycling exercise could enhance postprandial muscle MBF and prevent MBF impairments induced by high-glucose mixed-nutrient meal ingestion. In a randomized cross-over design, eight healthy young men ingested a high-glucose mixed-nutrient meal (1.1 g glucose/kg body weight; 45% carbohydrate, 20% protein and 35% fat) after an overnight fast (no-exercise control) and 3 h and 24 h after moderate-intensity cycling exercise (1 h at 70-75% V̇O2peak ). Skeletal muscle MBF, measured directly by contrast-enhanced ultrasound, was lower at 60 min and 120 min postprandially compared to baseline in all conditions (P < 0.05), with a greater decrease occurring from 60 min to 120 min in the control (no-exercise) condition only (P < 0.001). Despite this meal-induced decrease, MBF was still markedly higher compared to control in the 3 h post-exercise condition at 0 min (pre-meal; 74%, P = 0.004), 60 min (112%, P = 0.002) and 120 min (223%, P < 0.001), and in the 24 h post-exercise condition at 120 min postprandially (132%, P < 0.001). We also report that in the 3 h post-exercise condition postprandial blood glucose, non-esterified fatty acids (NEFAs), and fat oxidation were substantially elevated, and the insulin response to the meal delayed compared to control. This probably reflects a combination of increased post-exercise exogenous glucose appearance, substrate competition, and NEFA-induced insulin resistance. We conclude that prior cycling exercise elicits long-lasting effects on muscle MBF and partially mitigates MBF impairments induced by high-glucose mixed-nutrient meal ingestion.


Asunto(s)
Glucemia , Microcirculación , Músculo Esquelético , Glucemia/metabolismo , Glucosa , Humanos , Insulina/metabolismo , Masculino , Periodo Posprandial
4.
Biochem Biophys Res Commun ; 534: 533-539, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261883

RESUMEN

OBJECTIVE: To investigate the effect of high fat diet-induced insulin resistance on autophagy markers in the liver and skeletal muscle of mice in the fasted state and following an oral glucose bolus. METHODS: Forty C57BL/6J male mice were fed either a high fat, high sucrose (HFSD, n = 20) or standard chow control (CON, n = 20) diet for 16 weeks. Upon trial completion, mice were gavaged with water or glucose and skeletal muscle and liver were collected 15 min post gavage. Protein abundance and gene expression of autophagy markers and activation of related signalling pathways were assessed. RESULTS: Compared to CON, the HFSD intervention increased LC3B-II and p62/SQSTM1 protein abundance in the liver which is indicative of elevated autophagosome content via reduced clearance. These changes coincided with inhibitory autophagy signalling through elevated p-mTOR S2448 and p-ULK1S758. HFSD did not alter autophagy markers in skeletal muscle. Administration of an oral glucose bolus had no effect on autophagy markers or upstream signalling responses in either tissue regardless of diet. CONCLUSION: HFSD induces tissue-specific autophagy impairments, with autophagosome accumulation indicating reduced lysosomal clearance in the liver. In contrast, autophagy markers were unchanged in skeletal muscle, indicating that autophagy is not involved in the development of skeletal muscle insulin resistance.


Asunto(s)
Autofagia , Resistencia a la Insulina , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Animales , Dieta de Carga de Carbohidratos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL
5.
Am J Physiol Endocrinol Metab ; 318(6): E1014-E1021, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32286881

RESUMEN

Oral glucose ingestion leads to impaired muscle microvascular blood flow (MBF), which may contribute to acute hyperglycemia-induced insulin resistance. We investigated whether incorporating lipids and protein into a high-glucose load would prevent postprandial MBF dysfunction. Ten healthy young men (age, 27 yr [24, 30], mean with lower and upper bounds of the 95% confidence interval; height, 180 cm [174, 185]; weight, 77 kg [70, 84]) ingested a high-glucose (1.1 g/kg glucose) mixed-nutrient meal (10 kcal/kg; 45% carbohydrate, 20% protein, and 35% fat) in the morning after an overnight fast. Femoral arterial blood flow was measured via Doppler ultrasound, and thigh MBF was measured via contrast-enhanced ultrasound, before meal ingestion and 1 h and 2 h postprandially. Blood glucose and plasma insulin were measured at baseline and every 15 min throughout the 2-h postprandial period. Compared with baseline, thigh muscle microvascular blood volume, velocity, and flow were significantly impaired at 60 min postprandial (-25%, -27%, and -46%, respectively; all P < 0.05) and to a greater extent at 120 min postprandial (-37%, -46%, and -64%; all P < 0.01). Heart rate and femoral arterial diameter, blood velocity, and blood flow were significantly increased at 60 min and 120 min postprandial (all P < 0.05). Higher blood glucose area under the curve was correlated with greater MBF dysfunction (R2 = 0.742; P < 0.001). Ingestion of a high-glucose mixed-nutrient meal impairs MBF in healthy individuals for up to 2 h postprandial.


Asunto(s)
Glucemia/metabolismo , Arteria Femoral/fisiopatología , Glucosa/administración & dosificación , Hiperglucemia/fisiopatología , Insulina/metabolismo , Microcirculación/fisiología , Músculo Esquelético/irrigación sanguínea , Flujo Sanguíneo Regional/fisiología , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Arteria Femoral/diagnóstico por imagen , Voluntarios Sanos , Frecuencia Cardíaca/fisiología , Humanos , Hiperglucemia/diagnóstico por imagen , Masculino , Comidas , Músculo Esquelético/diagnóstico por imagen , Periodo Posprandial , Muslo , Ultrasonografía , Adulto Joven
6.
Diabetologia ; 62(12): 2310-2324, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31489455

RESUMEN

AIMS/HYPOTHESIS: This study aimed to examine the metabolic health of young apparently healthy non-obese adults to better understand mechanisms of hyperinsulinaemia. METHODS: Non-obese (BMI < 30 kg/m2) adults aged 18-35 years (N = 254) underwent a stable isotope-labelled OGTT. Insulin sensitivity, glucose effectiveness and beta cell function were determined using oral minimal models. Individuals were stratified into quartiles based on their insulin response during the OGTT, with quartile 1 having the lowest and quartile 4 the highest responses. RESULTS: Thirteen per cent of individuals had impaired fasting glucose (IFG; n = 14) or impaired glucose tolerance (IGT; n = 19), allowing comparisons across the continuum of insulin responses within the spectrum of normoglycaemia and prediabetes. BMI (~24 kg/m2) was similar across insulin quartiles and in those with IFG and IGT. Despite similar glycaemic excursions, fasting insulin, triacylglycerols and cholesterol were elevated in quartile 4. Insulin sensitivity was lowest in quartile 4, and accompanied by increased insulin secretion and reduced insulin clearance. Individuals with IFG had similar insulin sensitivity and beta cell function to those in quartiles 2 and 3, but were more insulin sensitive than individuals in quartile 4. While individuals with IGT had a similar degree of insulin resistance to quartile 4, they exhibited a more severe defect in beta cell function. Plasma branched-chain amino acids were not elevated in quartile 4, IFG or IGT. CONCLUSIONS/INTERPRETATION: Hyperinsulinaemia within normoglycaemic young, non-obese adults manifests due to increased insulin secretion and reduced insulin clearance. Individual phenotypic characterisation revealed that the most hyperinsulinaemic were more similar to individuals with IGT than IFG, suggesting that hyperinsulinaemic individuals may be on the continuum toward IGT. Furthermore, plasma branched-chain amino acids may not be an effective biomarker in identifying hyperinsulinaemia and insulin resistance in young non-obese adults.


Asunto(s)
Aminoácidos/sangre , Hiperinsulinismo/metabolismo , Secreción de Insulina/fisiología , Insulina/sangre , Adolescente , Adulto , Glucemia/metabolismo , Ayuno/sangre , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Hiperinsulinismo/sangre , Resistencia a la Insulina/fisiología , Lípidos/sangre , Masculino , Adulto Joven
7.
Am J Physiol Regul Integr Comp Physiol ; 315(5): R1003-R1016, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30183338

RESUMEN

It remains unclear whether high-intensity interval exercise (HIIE) elicits distinct molecular responses to traditional endurance exercise relative to the total work performed. We aimed to investigate the influence of exercise intensity on acute perturbations to skeletal muscle mitochondrial function (respiration and reactive oxygen species) and metabolic and redox signaling responses. In a randomized, repeated measures crossover design, eight recreationally active individuals (24 ± 5 yr; V̇o2peak: 48 ± 11 ml·kg-1·min-1) undertook continuous moderate-intensity [CMIE: 30 min, 50% peak power output (PPO)], high-intensity interval (HIIE: 5 × 4 min, 75% PPO, work matched to CMIE), and low-volume sprint interval (SIE: 4 × 30 s) exercise, ≥7 days apart. Each session included muscle biopsies at baseline, immediately, and 3 h postexercise for high-resolution mitochondrial respirometry ( Jo2) and H2O2 emission ( Jh2o2) and gene and protein expression analysis. Immediately postexercise and irrespective of protocol, Jo2 increased during complex I + II leak/state 4 respiration but Jh2o2 decreased ( P < 0.05). AMP-activated protein kinase and acetyl co-A carboxylase phosphorylation increased ~1.5 and 2.5-fold respectively, while thioredoxin-reductase-1 protein abundance was ~35% lower after CMIE vs. SIE ( P < 0.05). At 3 h postexercise, regardless of protocol, Jo2 was lower during both ADP-stimulated state 3 OXPHOS and uncoupled respiration ( P < 0.05) but Jh2o2 trended higher ( P < 0.08) and PPARGC1A mRNA increased ~13-fold, and peroxiredoxin-1 protein decreased ~35%. In conclusion, intermittent exercise performed at high intensities has similar dynamic effects on muscle mitochondrial function compared with endurance exercise, irrespective of whether total workload is matched. This suggests exercise prescription can accommodate individual preferences while generating comparable molecular signals known to promote beneficial metabolic adaptations.


Asunto(s)
Ejercicio Físico/fisiología , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Adaptación Fisiológica/fisiología , Adulto , Terapia por Ejercicio/métodos , Femenino , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos , Masculino , Consumo de Oxígeno/fisiología , Adulto Joven
8.
J Sport Exerc Psychol ; 40(1): 10-19, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29521569

RESUMEN

Using guidance from the reach, efficacy, adoption, implementation, and maintenance evaluation framework, we aimed to qualitatively evaluate the participant experiences of a workplace high-intensity interval training (HIIT) intervention. Twelve previously insufficiently active individuals (four males and eight females) were interviewed once as part of three focus groups. Perceptions of program satisfaction, barriers to and facilitators of adherence, and persistence to exercise were explored. HIIT initiates interest because of its novelty, provides a sense of accomplishment, and overcomes the barriers of perceived lack of time. The feeling of relatedness between the participants can attenuate negative unpleasant responses during the HIIT sessions. HIIT, in this workplace setting, is an acceptable intervention for physically inactive adults. However, participants were reluctant to maintain the same mode of exercise, believing that HIIT sessions were for the very fit.


Asunto(s)
Ejercicio Físico , Promoción de la Salud , Entrenamiento de Intervalos de Alta Intensidad , Lugar de Trabajo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Motivación , Cooperación del Paciente , Satisfacción del Paciente , Apoyo Social
9.
J Physiol ; 594(8): 2307-21, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25645978

RESUMEN

KEY POINTS: Skeletal muscle capillary density and vasoreactivity are reduced in obesity, due to reduced nitric oxide bioavailability. Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), but its effect on the skeletal muscle microvasculature has not been studied in obese individuals. We observed that SIT and MICT led to equal increases in capillarisation and endothelial eNOS content, while reducing endothelial NOX2 content in microvessels of young obese men. We conclude that SIT is equally effective at improving skeletal muscle capillarisation and endothelial enzyme balance, while being a time efficient alternative to traditional MICT. ABSTRACT: Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), leading to similar improvements in skeletal muscle capillary density and microvascular function in young healthy humans. In this study we made the first comparisons of the muscle microvascular response to SIT and MICT in an obese population. Sixteen young obese men (age 25 ± 1 years, BMI 34.8 ± 0.9 kg m(-2) ) were randomly assigned to 4 weeks of MICT (40-60 min cycling at ∼65% V̇O2 peak , 5 times per week) or constant load SIT (4-7 constant workload intervals of 200% Wmax 3 times per week). Muscle biopsies were taken before and after training from the m. vastus lateralis to measure muscle microvascular endothelial eNOS content, eNOS serine(1177) phosphorylation, NOX2 content and capillarisation using quantitative immunofluorescence microscopy. Maximal aerobic capacity (V̇O2 peak ), whole body insulin sensitivity and arterial stiffness were also assessed. SIT and MICT increased skeletal muscle microvascular eNOS content and eNOS ser(1177) phosphorylation in terminal arterioles and capillaries (P < 0.05), but the latter effect was eliminated when normalised to eNOS content (P = 0.217). SIT and MICT also reduced microvascular endothelial NOX2 content (P < 0.05) and both increased capillary density and capillary-fibre perimeter exchange index (P < 0.05). In parallel, SIT and MICT increased V̇O2 peak (P < 0.05) and whole body insulin sensitivity (P < 0.05), and reduced central artery stiffness (P < 0.05). As no significant differences were observed between SIT and MICT it is concluded that SIT is a time efficient alternative to MICT to improve aerobic capacity, insulin sensitivity and muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in young obese men.


Asunto(s)
Endotelio Vascular/enzimología , Terapia por Ejercicio/métodos , Resistencia a la Insulina , Microcirculación , Músculo Esquelético/irrigación sanguínea , Obesidad/fisiopatología , Consumo de Oxígeno , Adulto , Endotelio Vascular/metabolismo , Ejercicio Físico , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/terapia , Distribución Aleatoria
10.
Hum Reprod ; 31(11): 2619-2631, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27907900

RESUMEN

STUDY QUESTION: What is the degree of intrinsic insulin resistance (IR) in women with polycystic ovary syndrome (PCOS) and the relative contribution of BMI to overall IR based on meta-analysis of gold standard insulin clamp studies? SUMMARY ANSWER: We report an inherent reduction (-27%) of insulin sensitivity (IS) in PCOS patients, which was independent of BMI. WHAT IS ALREADY KNOWN: PCOS is prevalent, complex and underpinned by IR but controversies surround the degree of intrinsic IR in PCOS, the effect of BMI and the impact of the different diagnostic criteria (NIH versus Rotterdam) in PCOS. STUDY DESIGN, SIZE, DURATION: A systematic review and meta-analysis of Medline and All EBM databases was undertaken of studies published up to 30 May 2015. Studies were included if premenopausal women diagnosed with PCOS were compared with a control group for IS, measured by the gold standard euglycaemic-hyperinsulinaemic clamp. The systematic review adheres to the principles of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Meta-analyses were performed using mixed modelling and magnitude-based inferences expressed as mean effect ±99% CI. We inferred the effect was small, moderate or large relative to a smallest important change of -3.7% or 3.8% derived by standardisation. Effects were deemed unclear when the CI overlapped smallest important positive and negative values. Effects were qualified with probabilities reflecting uncertainty in the magnitude of the true value (likely, 75-95%; very likely, 95-99.5%; most likely, >99.5%). PARTICIPANTS/MATERIALS, SETTING, METHOD: A total of 4881 articles were returned from the search. Of these, 28 articles were included in the meta-analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Overall IS was lower in women with PCOS compared with controls (mean effect -27%, 99% CI ±6%; large, most likely lower). A higher BMI exacerbated the reduction in IS by -15% (±8%; moderate, most likely lower) in PCOS compared with control women. There was no clear difference in IS between women diagnosed by the original National Institutes of Health  (NIH) criteria alone compared with those diagnosed by the Rotterdam criteria. Low levels of sex hormone-binding globulin (SHBG) were associated with reduced levels of IS (-10%, ±10%; small, very likely negative), which was not confounded by BMI. LIMITATIONS, REASONS FOR CAUTION: This systematic review and meta-analysis inherited the confounding problems of small sample sizes, missing data (e.g. some hormones, waist and hip girths) and the lack of Rotterdam criteria phenotype reporting, limiting the evidence synthesis and meta-analysis. WIDER IMPLICATIONS OF THE FINDINGS: BMI has a greater impact on IS in PCOS than in controls. SHBG appears a potentially valuable marker of IR in PCOS, whereas testosterone after adjustment for BMI demonstrated an unexpected interplay with IS which warrants further investigation. STUDY FUNDING/COMPETING INTERESTS: This work was supported by grants from the National Health & Medical Research Council (NHMRC), grant number 606553 (H.J.T., N.K.S.), as well as Monash University. H.J.T. is an NHMRC Research Fellow. N.K.S. is supported through the Australian Government's Collaborative Research Networks (CRN) programme. The funding bodies played no role in the design, methods, data management or analysis or in the decision to publish. All authors declare no conflict of interests. REGISTRATION NUMBER: N/A.


Asunto(s)
Resistencia a la Insulina/fisiología , Síndrome del Ovario Poliquístico/metabolismo , Índice de Masa Corporal , Femenino , Técnica de Clampeo de la Glucosa , Humanos
11.
Microcirculation ; 21(8): 738-46, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24976488

RESUMEN

OBJECTIVE: The effects of RT on muscle mass, strength, and insulin sensitivity are well established, but the underlying mechanisms are only partially understood. The main aim of this study was to investigate whether RT induces changes in endothelial enzymes of the muscle microvasculature, which would increase NO bioavailability and could contribute to improved insulin sensitivity. METHODS: Eight previously sedentary males (age 20 ± 0.4 years, BMI 24.5 ± 0.9 kg/m(2) ) completed six weeks of RT 3x/week. Muscle biopsies were taken from the m. vastus lateralis and microvascular density; and endothelial-specific eNOS content, eNOS Ser(1177) phosphorylation, and NOX2 content were assessed pre- and post-RT using quantitative immunofluorescence microscopy. Whole-body insulin sensitivity (measured as Matsuda Index), microvascular Kf (functional measure of the total available endothelial surface area), and arterial stiffness (AIx, central, and pPWV) were also measured. RESULTS: Measures of microvascular density, microvascular Kf , microvascular eNOS content, basal eNOS phosphorylation, and endothelial NOX2 content did not change from pre-RT to post-RT. RT increased insulin sensitivity (p < 0.05) and reduced resting blood pressure and AIx (p < 0.05), but did not change central or pPWV. CONCLUSIONS: RT did not change any measure of muscle microvascular structure or function.


Asunto(s)
Microcirculación/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/enzimología , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Aptitud Física/fisiología , Adulto , Humanos , Masculino , Fosforilación/fisiología
12.
Histochem Cell Biol ; 142(3): 245-56, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24671495

RESUMEN

Focal adhesion kinase (FAK) and paxillin are functionally linked hormonal- and mechano-sensitive proteins. We aimed to describe paxillin's subcellular distribution using widefield and confocal immunofluorescence microscopy and test the hypothesis that FAK and paxillin colocalise in human skeletal muscle and its associated microvasculature. Percutaneous muscle biopsies were collected from the m. vastus lateralis of seven healthy males, and 5-µm cryosections were stained with anti-paxillin co-incubated with anti-dystrophin to identify the sarcolemma, anti-myosin heavy chain type I for fibre-type differentiation, anti-dihydropyridine receptor to identify T-tubules, lectin UEA-I to identify the endothelium of microvessels and anti-α-smooth muscle actin to identify vascular smooth muscle cells (VSMC). Colocalisation of anti-paxillin with anti-dystrophin or anti-FAK was quantified using Pearson's correlation coefficient on confocal microscopy images. Paxillin was primarily present in (sub)sarcolemmal regions of skeletal muscle fibres where it colocalised with dystrophin (r = 0.414 ± 0.026). The (sub)sarcolemmal paxillin immunofluorescence intensity was ~2.4-fold higher than in sarcoplasmic regions (P < 0.001) with sarcoplasmic paxillin immunofluorescence intensity ~10 % higher in type I than in type II fibres (P < 0.01). In some longitudinally orientated fibres, paxillin formed striations that corresponded to the I-band region. Paxillin immunostaining was highest in endothelial and VSMC and distributed heterogeneously in both cell types. FAK and paxillin colocalised at (sub)sarcolemmal regions and within the microvasculature (r = 0.367 ± 0.036). The first images of paxillin in human skeletal muscle suggest paxillin is present in (sub)sarcolemmal and I-band regions of muscle fibres and within the microvascular endothelium and VSMC. Colocalisation of FAK and paxillin supports their suggested role in hormonal and mechano-sensitive signalling.


Asunto(s)
Quinasa 1 de Adhesión Focal/análisis , Microvasos/metabolismo , Músculo Esquelético/metabolismo , Paxillin/análisis , Adulto , Técnica del Anticuerpo Fluorescente , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Masculino , Microvasos/química , Músculo Esquelético/química , Paxillin/metabolismo , Adulto Joven
13.
Sports Med Open ; 10(1): 66, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844675

RESUMEN

BACKGROUND: Palmitoylethanolamide (PEA) has analgesic/anti-inflammatory properties that may be a suitable alternative to over-the-counter (OTC) non-steroidal analgesics/anti-inflammatories. While OTC pain medications can impair strength training adaptations, the mechanism of action of PEA is distinct from these and it may not negatively affect skeletal muscle adaptations to strength training. METHODS: The primary aim of this study was to investigate the effects of daily PEA supplementation (350 mg Levagen + equivalent to 300 mg PEA) combined with 8-weeks of resistance training on lean body mass with secondary aims addressing strength, power, sleep, and wellbeing compared to placebo (PLA) in young, healthy, active adults. In a randomized, controlled, double-blinded trial, 52 untrained, recreationally active participants aged 18-35 y were allocated to either the PEA or PLA groups. Participants consumed either 2 × 175 mg Levagen + PEA or identically matched maltodextrin capsules during an 8-week period of whole-body resistance training. This trial assessed the pre- to post- changes in total and regional lean body mass, muscular strength (1-RM bench, isometric mid-thigh pull), muscular power [countermovement jump (CMJ), bench throw], pain associated with exercise training, sleep, and wellbeing compared with the PEA or PLA condition. RESULTS: 48 Participants were included in the final intention to treat (ITT) analysis and we also conducted per protocol (PP) analysis (n = 42). There were no significant between-group differences for total or regional lean muscle mass post-intervention. There was a significantly higher jump height (CMJ) at week 10 in the PEA group compared to the PLA (Adjusted mean difference [95% CI] p-value; ITT: - 2.94 cm [- 5.15, - 0.74] p = 0.010; PP: - 2.93 cm [- 5.31, - 0.55] p = 0.017). The PLA group had higher 1-RM bench press post-intervention compared with the PEA group (ITT: 2.24 kg [0.12, 4.37] p = 0.039; PP: 2.73 kg [0.40, 5.06] p = 0.023). No significant treatment effects were noted for any of the other outcomes. CONCLUSION: PEA supplementation, when combined with 8 weeks of strength training, did not impair lean mass gains and it resulted in significantly higher dynamic lower-body power when compared with the PLA condition. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR: ACTRN12621001726842p).

14.
J Physiol ; 591(3): 641-56, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22946099

RESUMEN

Sprint interval training (SIT) has been proposed as a time efficient alternative to endurance training (ET) for increasing skeletal muscle oxidative capacity and improving certain cardiovascular functions. In this study we sought to make the first comparisons of the structural and endothelial enzymatic changes in skeletal muscle microvessels in response to ET and SIT. Sixteen young sedentary males (age 21 ± SEM 0.7 years, BMI 23.8 ± SEM 0.7 kg m(-2)) were randomly assigned to 6 weeks of ET (40-60 min cycling at ∼65% , 5 times per week) or SIT (4-6 Wingate tests, 3 times per week). Muscle biopsies were taken from the m. vastus lateralis before and following 60 min cycling at 65% to measure muscle microvascular endothelial eNOS content, eNOS serine(1177) phosphorylation, NOX2 content and capillarisation using quantitative immunofluorescence microscopy. Whole body insulin sensitivity, arterial stiffness and blood pressure were also assessed. ET and SIT increased skeletal muscle microvascular eNOS content (ET 14%; P < 0.05, SIT 36%; P < 0.05), with a significantly greater increase observed following SIT (P < 0.05). Sixty minutes of moderate intensity exercise increased eNOS ser(1177) phosphorylation in all instances (P < 0.05), but basal and post-exercise eNOS ser(1177) phosphorylation was lower following both training modes. All microscopy measures of skeletal muscle capillarisation (P < 0.05) were increased with SIT or ET, while neither endothelial nor sarcolemmal NOX2 was changed. Both training modes reduced aortic stiffness and increased whole body insulin sensitivity (P < 0.05). In conclusion, in sedentary males SIT and ET are effective in improving muscle microvascular density and eNOS protein content.


Asunto(s)
Ciclismo/fisiología , Músculo Esquelético/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Resistencia Física/fisiología , Adulto , Presión Sanguínea , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina , Masculino , Glicoproteínas de Membrana/metabolismo , Microvasos , Músculo Esquelético/irrigación sanguínea , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Conducta Sedentaria , Rigidez Vascular , Adulto Joven
15.
J Appl Physiol (1985) ; 134(3): 581-592, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656983

RESUMEN

Intramuscular lipid (IMCL) utilization during exercise was controversial as numerous studies did not observe a decline in IMCL content post-exercise when assessed in muscle biopsies using biochemical techniques. Contemporary techniques including immunofluorescence microscopy and 1H-magnetic resonance spectroscopy (1H-MRS) offer advantages over biochemical techniques. The primary aim of this systematic review, meta-analysis, and meta-regression was to examine the net degradation of IMCL in response to an acute bout of cycling exercise in humans, as assessed with different analytical approaches. A secondary aim was to explore the factors influencing IMCL degradation including feeding status, exercise variables, and participant characteristics. A total of 44 studies met the inclusion criteria using biochemical, immunofluorescence, and 1H-MRS techniques. A meta-analysis was completed using a random effects model and percentage change in IMCL content calculated from the standardized mean difference. Cycling exercise resulted in a net degradation of IMCL regardless of technique (total effect -23.7%, 95% CI = -28.7 to -18.7%) and there was no difference when comparing fasted versus fed-state exercise (P > 0.05). IMCL degradation using immunofluorescence techniques detected larger effects in type I fibers compared with whole muscle using biochemical techniques (P = 0.003) and in type I fibers compared with type II fibers (P < 0.001). Although IMCL degradation was associated with exercise duration, V̇o2max, and BMI, none of these factors independently related to the change in IMCL content. These findings provide strong evidence that the analytical approach can influence the assessment of IMCL degradation in human skeletal muscle in response to exercise.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Humanos , Ciclismo/fisiología , Ejercicio Físico/fisiología , Metabolismo de los Lípidos , Lípidos , Músculo Esquelético/fisiología
16.
Trials ; 24(1): 245, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004121

RESUMEN

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics are used frequently by athletes either prophylactically for the prevention of pain, or to accelerate recovery following an injury. However, these types of pain management strategies have been shown to inhibit signalling pathways (e.g., cyclooxygenase-2) that may hinder muscular adaptations such as hypertrophy and strength. Nutraceuticals such as palmitoylethanolamide (PEA) have analgesic properties that act via different mechanisms to NSAIDS/analgesics. Furthermore, PEA has been shown to have a positive effect on sleep and may contribute positively to muscle hypertrophy via PKB activation. Although PEA has not been widely studied in the athletic or recreationally active population, it may provide an alternative solution for pain management if it is found not to interfere with, or enhance training adaptations. Therefore, the study aim is to investigate the effects of daily PEA supplementation (Levagen + ®) with resistance training on lean body mass, strength, power and physical performance and outcomes of recovery (e.g., sleep) compared to placebo. METHODS: This double-blind, randomised controlled study will take place over an 11-week period (including 8-weeks of progressive resistance training). Participants for this study will be 18-35 years old, healthy active adults that are not resistance trained. Participants will attend a familiarisation (week 0), pre-testing (week 1) and final-testing (week 11). At the pre-testing and final-testing weeks, total lean body mass (dual-energy X-ray absorptiometry; DXA), total mid-thigh cross sectional area (pQCT), maximal muscular strength (1 repetition maximum bench press, isometric mid-thigh pull) and power (countermovement jump and bench throw) will be assessed. Additionally, circulating inflammatory cytokines and anabolic hormones, sleep quality and quantity (ActiGraph), pain and subjective wellbeing (questionnaires) will also be examined. DISCUSSION: This study is designed to investigate the effects that PEA may have on pre-to post intervention changes in total body and regional lean muscle mass, strength, power, sleep, subjective wellbeing, and pain associated with resistance training and menstruation compared with the placebo condition. Unlike other NSAIDs and analgesics, which may inhibit muscle protein synthesis and training adaptations, PEA which provides analgesia via alternative mechanisms may provide an alternative pain management solution. It is therefore important to determine if this analgesic compound interferes with or enhances training adaptations so that athletes and active individuals can make an informed decision on their pain management strategies. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR: ACTRN12621001726842p).


Asunto(s)
Entrenamiento de Fuerza , Femenino , Humanos , Adulto , Adolescente , Adulto Joven , Entrenamiento de Fuerza/métodos , Pisum sativum , Australia , Fuerza Muscular , Analgésicos/farmacología , Dolor , Suplementos Dietéticos/efectos adversos , Antiinflamatorios no Esteroideos/efectos adversos , Músculo Esquelético , Ensayos Clínicos Controlados Aleatorios como Asunto
17.
Microcirculation ; 19(7): 642-51, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22642427

RESUMEN

OBJECTIVE: The net production of NO by the muscle microvascular endothelium is a key regulator of muscle microvascular blood flow. Here, we describe the development of a method to quantify the protein content and phosphorylation of endothelial NO synthase (eNOS content and eNOS ser(1177) phosphorylation) and NAD(P)H oxidase expression. METHODS: Human muscle cryosections were stained using antibodies targeting eNOS, p-eNOS ser(1177) and NOX2 in combination with markers of the endothelium and the sarcolemma. Quantitation was achieved by analyzing fluorescence intensity within the area stained positive for the microvascular endothelium. Analysis was performed in duplicate and repeated five times to investigate CV. In addition, eight healthy males (age 21 ± 1 year, BMI 24.4 ± 1.0 kg/m(2)) completed one hour of cycling exercise at ~65%VO(2max) . Muscle biopsies were taken from the m. vastus lateralis before and immediately after exercise and analyzed using the new methods. RESULTS: The CV of all methods was between 6.5 and 9.5%. Acute exercise increased eNOS serine(1177) phosphorylation (fold change 1.29 ± 0.05, p < 0.05). CONCLUSIONS: These novel methodologies will allow direct investigations of the molecular mechanisms underpinning the microvascular responses to insulin and exercise, the impairments that occur in sedentary, obese and elderly individuals and the effect of lifestyle interventions.


Asunto(s)
Endotelio Vascular/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Microcirculación/fisiología , NADPH Oxidasas/biosíntesis , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico/metabolismo , Adulto , Animales , Velocidad del Flujo Sanguíneo/fisiología , Endotelio Vascular/citología , Humanos , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Fosforilación/fisiología , Ratas , Ratas Wistar
18.
Histochem Cell Biol ; 138(4): 617-26, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22752263

RESUMEN

Within animal skeletal muscle, focal adhesion kinase (FAK) has been associated with load-dependent molecular and metabolic adaptation including the regulation of insulin sensitivity. This study aimed to generate the first visual images of the localisation of FAK within human skeletal muscle fibres and its associated microvasculature using widefield and confocal immunofluorescence microscopy. Percutaneous muscle biopsies, taken from five lean, active males, were frozen and 5-µm cryosections were incubated with FAK antibodies for visualisation in muscle fibres and the microvasculature. Anti-myosin heavy chain type I was used for fibre-type differentiation. Muscle sections were also incubated with anti-dihydropyridine receptor (DHPR) to investigate co-localisation of FAK with the t-tubules. FITC-conjugated Ulex europaeus Agglutinin I stained the endothelium of the capillaries, whilst anti-smooth muscle actin stained the vascular smooth muscle of arterioles. Fibre-type differences in the intensity of FAK immunofluorescence were determined with image analysis software. In transversely and longitudinally orientated fibres, FAK was localised at the sarcolemmal regions. In longitudinally orientated fibres, FAK staining also showed uniform striations across the fibre and co-staining with DHPR suggests FAK associates with the t-tubules. There was no fibre-type difference in sarcoplasmic FAK content. Within the capillary endothelium and arteriolar smooth muscle, FAK was distributed heterogeneously as clusters. This is the first study to visualise FAK in human skeletal muscle microvasculature and within the (sub)sarcolemmal and t-tubule regions using immunofluorescence microscopy. This technique will be an important tool for investigating the role of FAK in the intracellular signalling of human skeletal muscle and the endothelium of its associated microvasculature.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Microvasos/enzimología , Músculo Esquelético/enzimología , Humanos , Masculino , Microscopía Fluorescente , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/irrigación sanguínea , Adulto Joven
19.
NMR Biomed ; 25(11): 1253-62, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22407940

RESUMEN

Biomarkers of early response to treatment have the potential to improve cancer therapy by allowing treatment to be tailored to the individual. Alterations in lipids detected by in vivo MRS have been suggested as noninvasive biomarkers of cell stress and early indicators of cell death. An improved understanding of the relationship between MRS lipids and cell stress in vitro would aid in the translation of this technique into clinical use. Rat BT4C glioma cells were treated with 50 µ m cis-dichlorodiammineplatinum II (cisplatin), a commonly used chemotherapeutic agent, and harvested at several time points up to 72 h. High-resolution magic angle spinning (1) H MRS of cells was then performed on a 600-MHz NMR spectrometer. The metabolites were quantified using a time domain fitting method, TARQUIN. Increases were detected in saturated and polyunsaturated fatty acid resonances early during the exposure to cisplatin. The fatty acid CH(2) /CH(3) ratio was unaltered by treatment after allowing for contributions of macromolecules. Polyunsaturated fatty acids increased on treatment, with the group -CH=CH-CH(2) -CH=CH- accounting for all the unsaturated fatty acid signals. Transmission electron microscopy, in addition to Nile red and 4',6-diamino-2-phenylindole co-staining, revealed that the lipid increase was associated with cytoplasmic neutral lipid droplets. Small numbers of apoptotic and necrotic cells were detected by trypan blue, annexin V-fluorescein isothiocyanate-labelled flow cytometry and DNA laddering after up to 48 h of cisplatin exposure. Propidium iodide flow cytometry revealed that cells accumulated in the G1 stage of the cell growth cycle. In conclusion, an increase in the size of the lipid droplets is detected in morphologically viable cells during cisplatin exposure. (1) H MRS can detect lipid alterations during cell cycle arrest and progression of cell death, and has the potential to provide a noninvasive biomarker of treatment efficacy in vivo.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Glioma/patología , Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Protones , Animales , Anexina A5/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/ultraestructura , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Fragmentación del ADN/efectos de los fármacos , Citometría de Flujo , Fluoresceína-5-Isotiocianato/metabolismo , Glioma/metabolismo , Glioma/ultraestructura , Indoles/metabolismo , Oxazinas/metabolismo , Propidio/metabolismo , Ratas , Coloración y Etiquetado , Azul de Tripano/metabolismo
20.
Annu Rev Nutr ; 30: 13-34, 2010 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-20373917

RESUMEN

Intramuscular triacylglycerol (IMTG) is both a dynamic fat-storage depot that can expand during periods of elevated lipid availability and a fatty acid source that can be utilized during periods of increased energy expenditure in active individuals. Although many studies have investigated the lifestyle determinants of IMTG content, the results are far from consistent, and studies attempting to unravel the mechanisms behind IMTG metabolism are in their infancy. The limited evidence available suggests that the enzymes responsible for skeletal muscle lipolysis and IMTG synthesis play an important role in determining the fate of fatty acids and therefore the concentration of lipid metabolites and insulin sensitivity of skeletal muscle. This review provides a summary of current knowledge on the effects of acute and chronic exercise as well as energy intake and macronutrient composition of the diet upon the metabolism of IMTG and the implications for metabolic health.


Asunto(s)
Ejercicio Físico/fisiología , Metabolismo de los Lípidos/fisiología , Músculo Esquelético/metabolismo , Fenómenos Fisiológicos de la Nutrición/fisiología , Triglicéridos/metabolismo , Dieta , Ingestión de Energía/fisiología , Humanos , Resistencia a la Insulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA